TY - JOUR A1 - Zientek, Nicolai A1 - Laurain, C. A1 - Meyer, Klas A1 - Paul, Andrea A1 - Engel, D. A1 - Guthausen, G. A1 - Kraume, M. A1 - Maiwald, Michael T1 - Automated data evaluation and modelling of simultaneous F-19-H-1 medium-resolution NMR spectra for online reaction monitoring N2 - Medium-resolution nuclear magnetic resonance spectroscopy (MR-NMR) currently develops to an important analytical tool for both quality control and processmonitoring. In contrast to high-resolution onlineNMR (HR-NMR),MR-NMRcan be operated under rough environmental conditions. A continuous re-circulating stream of reaction mixture fromthe reaction vessel to the NMR spectrometer enables a non-invasive, volume integrating online analysis of reactants and products. Here, we investigate the esterification of 2,2,2-trifluoroethanol with acetic acid to 2,2,2-trifluoroethyl acetate both by 1H HR-NMR (500MHz) and 1H and 19F MRNMR (43MHz) as amodel system. The parallel online measurement is realised by splitting the flow,which allows the adjustment of quantitative and independent flow rates, both in the HR-NMR probe as well as in the MR-NMR probe, in addition to a fast bypass line back to the reactor. One of the fundamental acceptance criteria for online MR-MNR spectroscopy is a robust data treatment and evaluation strategy with the potential for automation. The MR-NMR spectra are treated by an automated baseline and phase correction using the minimum entropy method. The evaluation strategies comprise (i) direct integration, (ii) automated line fitting, (iii) indirect hard modelling (IHM) and (iv) partial least squares regression (PLS-R). To assess the potential of these evaluation strategies for MR-NMR, prediction results are compared with the line fitting data derived from the quantitative HR-NMR spectroscopy. Although, superior results are obtained from both IHM and PLS-R for 1H MR-NMR, especially the latter demands for elaborate data pretreatment, whereas IHM models needed no previous alignment. KW - NMR KW - 1H-NMR KW - 19F-NMR KW - Medium-resolution NMR KW - Online NMR KW - Quantitative NMR KW - Reaction monitoring KW - Data processing KW - Automation KW - Process analytical technology KW - IHM KW - Indirect hard modeling KW - Chemometrics KW - PLS-R KW - Partial least squares regression PY - 2016 UR - http://onlinelibrary.wiley.com/doi/10.1002/mrc.4216/abstract DO - https://doi.org/doi:10.1002/mrc.4216 VL - 54 SP - 513 EP - 520 PB - John Wiley & Sons, Ltd CY - Hoboken, New Jersey, USA AN - OPUS4-36135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas A1 - Zientek, Nicolai T1 - Towards online reaction monitoring with fully automated NMR data evaluation and modelling - Current results from simultaneous 19F-1H medium resolution NMR experiments N2 - NMR Process Monitoring Towards an automated field integration T2 - 3rd Practical Applications of NMR in Industry Conference (PANIC) - Mestrelab users' meeting CY - La Jolla, CA, USA DA - 08.02.2015 KW - Online NMR spectroscopy KW - Reaction monitoring KW - Prozessanalytik KW - Process analytical technology PY - 2015 AN - OPUS4-36145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas T1 - Online Spectroscopy in Microemulsions- A Process Analytical approach for a Hydroformylation Miniplant I- Experimental setup and NMR Reaction Montoring T2 - 11. Kolloquium Prozessanalytik CY - Wien, Austria DA - 2015-11-30 PY - 2015 AN - OPUS4-35156 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas T1 - Field integration of benchtop NMR instruments for online monitoring and process control of a modular industrial reaction step N2 - Online monitoring and process control requires fast and noninvasive analytical methods, which are able to monitor the concentration of reactants in multicomponent mixtures with parts-per-million resolution. Online NMR spectroscopy can meet these demands when flow probes are directly coupled to reactors, since this method features a high linearity between absolute signal area and sample concentration, which makes it an absolute analytical comparison method being independent on the matrix. Due to improved magnet design and field shimming strategies portable and robust instruments have been introduced to the market by several manufacturers during the last few years. First studies with this technology showed promising results to monitor chemical reaction in the laboratory. Within the project CONSENS, the continuous production of high-value products in small production scale is advanced by introducing benchtop NMR spectroscopy. CONSENS is a research and innovation project on integrated control and sensing for sustainable operation of flexible intensified processes. This poster will present the first steps of the process integration of a benchtop NMR instrument for a lithiation process and outlines further fields of activity and potential challenges. Hereby, the following issues are going to be addressed: explosion-proof housing for the spectrometer, automation of signal processing (data pretreatment, evaluation and communication to the control system), flow cells and measuring conditions. Furthermore, first online spectra of the lithiation reaction in batch mode were acquired in lab scale. The reaction was performed in a 25 mL glass reactor with thermal jackets for temperature control of the reaction mixture. The Li-HMDS was dosed stepwise by using a glass syringe. First spectra in the proton and fluorine domain were recorded online using a flowrate of 3.5 mL min–1 and a simple 5 mm polytetrafluoroethylene tube (PTFE) as a flow cell. T2 - 4th Practical Applications of NMR in Industry Conference (PANIC) CY - Houston, Texas, USA DA - 15.02.2016 KW - Reaction monitoring KW - Online NMR spectroscopy PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-354427 AN - OPUS4-35442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas T1 - Online NMR spectroscopy as a reference tool for model developments - Successful approaches in process analytical technology N2 - Quantitative Online NMR spectroscopy as a direct ratio method of analysis represents a perfect reference for calibration of further process analytical techniques, e.g., optical spectroscopic techniques. In this work we present a combined approach including Online NMR and Raman spectroscopy on a laboratory setup for development of suitable models for process monitoring. Therefore we investigated the absorption process of carbon dioxide in solutions of monoethanolamine, as well as the homogeneous catalyzed hydroformylation reaction of 1-dodecene taking place in an emulsion stabilized by a technical surfactant. The models for Raman spectroscopy were tested and approved during several days of operational studies of miniplant-scale setups for both mentioned applications. T2 - 4th Annual Practical Applications of NMR in Industry Conference (PANIC) CY - Houston, Texas, USA DA - 15.02.2016 KW - Online-NMR spectroscopy KW - Online-Raman spectroscopy KW - Process Analytical Technology PY - 2016 AN - OPUS4-35423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas T1 - qNMR under pressure - applications on compressed and liquefied gases N2 - During the last years quantitative NMR spectroscopy has become a general method for solving complex problems in science and industry. The opportunity of a calibration-free quantification, related to a simple counting of the nuclear spins in the active volume of the spectrometer represents a key advantage comparing to other analytical techniques. With modern NMR systems detection limits in the lower ppm range on a molar basis are accessible in a reasonable time period, which makes it a promising method for purity assessment, as well as applications in metrological research. First experiments showed that qNMR is suitable for gas analysis with respect to components used for production of primary reference gas mixtures. For this a laboratory setup for high-pressure NMR experiments up to 20 MPa (2900 psi) in fluid and gas phase was built and tested. In this work we show the determination of the composition of high precision mixtures, consisting of liquid and liquefied hydrocarbons commonly supplied in floating piston cylinders. Therefore an experimental setup was developed allowing sampling, as well as circulation of the mixture within a high-pressure NMR tube by using a concentric tubing assembly. Additionally, a piston-cylinder pressure cell was designed and manufactured allowing wide-range volume displacement. Mainly intended for density variation within supercritical fluid experiments, it can also function as a compression element for further increasing of gas-pressure in the system. Equipped with liquid thermostat and a motor-powered screw drive unit it is designed to operate at pressure levels up to 60 MPa (8700 psi) and temperatures up to 130 °C. T2 - 4th Annual practical applications of NMR in industry conference (PANIC) CY - Houston, TX, USA DA - 15.02.2016 KW - Gas-phase NMR KW - High-pressure NMR KW - Liquefied gases PY - 2016 AN - OPUS4-35435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas T1 - Online Spectroscopy in Microemulsions- A Process Analytical approach for Hydroformylation Miniplant I- Experimental setup and NMR Reaction Monitoring T2 - Pro2NMR Autum School 2015 CY - Aachen, Germany DA - 2015-12-08 PY - 2015 AN - OPUS4-35110 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas T1 - Quantitative NMR spectroscopy of technical mixtures and gases from elevated to high-pressure N2 - Recent technical developments of NMR instruments such as in acquisition electronics and probe design allow detection limits of components in liquid mixtures in the lower ppm range (approx.. 5–10 ppm amount of substance). The major advantage of quantitative NMR spectroscopy (qNMR) is that it is a direct ratio method of analysis without the need of calibration. This means that the signal for a specific NMR-active nucleus (e.g., a proton) in an analyte can be compared and quantified by reference to a different nucleus of a separate compound, comparable to a counting of spins in the active volume of the spectrometer. Technical mixtures can be investigated online directly next to a process setup by using flow probes. This makes it a promising method for process analytical applications, especially during process development in laboratory and pilot plant scale. With the growing market of Benchtop devices based on permanent magnets nowadays an integration of NMR spectroscopy in an industrial environment becomes reasonable. A special application of qNMR in technical mixtures is the observation in the gas phase, which is rarely applied compared to liquid and solid NMR studies. Because of the low density it results in a reduced sensitivity, which can be improved by applying pressure. Therefore a high-pressure NMR setup was developed based on a commercially available NMR tube made of zirconia. This is currently tested up to 20 MPa, but can be extended up to 100 MPa with regard to pressure rating of its components. This work shows results of gas-phase application on natural-gas like reference gas mixtures produced at BAM, as well as investigations on liquefied gas mixtures with high accuracy provided in piston cylinders. Besides that amine gas treatment and hydroformylation in a microemulsion represent two other examples of applications in process analytical technology. These show the potential of combination of online NMR spectroscopy with other spectroscopic methods, especially during model development for data evaluation. T2 - Presentation at Statoil Research Center CY - Trondheim, Norway DA - 27.05.2016 KW - Quantitative NMR spectroscopy KW - Process analytical technology KW - Gas-phase NMR PY - 2016 AN - OPUS4-36330 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zientek, Nicolai A1 - Meyer, Klas A1 - Kern, Simon A1 - Maiwald, Michael T1 - Quantitative online NMR spectroscopy in a nutshell N2 - Online NMR spectroscopy is an excellent tool to study complex reacting multicomponent mixtures and gain process insight and understanding. For online studies under process conditions, flow NMR probes can be used in a wide range of temperature and pressure. This paper compiles the most important aspects towards quantitative process NMR spectroscopy in complex multicomponent mixtures and provides examples. After NMR spectroscopy is introduced as an online method and for technical samples without sample preparation in deuterated solvents, influences of the residence time distribution, pre-magnetization, and cell design are discussed. NMR acquisition and processing parameters as well as data preparation methods are presented and the most practical data analysis strategies are introduced. KW - Prozessanalytik KW - Process analytical technology KW - Online NMR spectroscopy KW - Online monitoring PY - 2016 DO - https://doi.org/10.1002/cite.201500120 SN - 0009-286X VL - 88 IS - 6 SP - 698 EP - 709 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim, Germany AN - OPUS4-36333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Wander, Lukas A1 - Paul, Andrea A1 - Bremser, Wolfram A1 - Maiwald, Michael T1 - Mathematical and statistical tools for online NMR spectroscopy in chemical processes N2 - Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied, which require excessive calibration effort. NMR spectroscopy has a high potential for direct loop process control while exhibiting short set-up times. Compact NMR instruments make NMR spectroscopy accessible in industrial and harsh environ¬ments for advanced process monitoring and control, as demonstrated within the European Union’s Horizon 2020 project CONSENS. We present a range of approaches for the automated spectra analysis moving from conventional multivariate statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modelling and Quantum Mechanical calculations). By using the benefits of traditional qNMR experiments data analysis models can meet the demands of the PAT community (Process Analytical Technology) regarding low calibration effort/calibration free methods, fast adaptions for new reactants or derivatives and robust automation schemes. T2 - Advanced Mathematical and Computational Tools in Metrology and Testing conference CY - Glasgow, United Kingdom DA - 29.08.2017 KW - Online NMR Spectroscopy KW - Process Control KW - Partial Least Squares Regression KW - Indirect Hard Modelling KW - Quantum Mechanics KW - First Principles PY - 2018 SN - 978-9-813-27429-7 VL - 89 SP - 229 EP - 234 PB - World Scientific CY - New Jersey AN - OPUS4-51391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -