TY - CONF A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Wander, Lukas A1 - Gräßer, Patrick A1 - Acker, J. A1 - Maiwald, Michael T1 - Online NMR and Raman Spectroscopy – Combination of PAT tools for Process Monitoring N2 - Improvement in deep process understanding is a mandatory prerequisite for the application of modern concepts like Industrial Internet of Things (IIoT) or “Industrie 4.0”. The direct hyphenation with online methods of process analytical technology (PAT) allows profound insights into the actual reactions within chemical and pharmaceutical production steps and provides necessary information for associated advanced control strategies. While the industrial application of online Raman spectroscopy has already been successfully demonstrated, low-field NMR spectroscopy is not yet adequately developed as a robust online method for use in process industry. The high information content combined with the low calibration effort makes NMR spectroscopy a highly promising method for modern process automation with a high flexibility due to short set-up times and novel calibration concepts. This is a major advantage compared to other analytical methods, especially regarding multi-purpose plant strategies, as well as processes suffering from fluctuating quality of raw materials. The work presented here focusses on the heterogeneous catalyzed hydrogenation of 2-butyne-1,4-diol, as a step of the synthesis of industrially important solvent tetrahydrofuran. This reaction is proceeding via an intermediate product and suffers from competitive reaction paths. In this application, online NMR and Raman spectroscopy were combined with data from classical process sensors, e.g., pressure, temperature, and flow transducers in a highly automated setup for the development of innovative control concepts. T2 - Quantitative NMR Methods for Reaction and Process Monitoring (NMRPM) CY - Kaiserslautern, Germany DA - 31.01.2019 KW - Process Analytical Technology KW - Hydrogenation KW - Compact NMR Spectroscopy KW - Online-NMR spectroscopy PY - 2019 AN - OPUS4-47310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Peters, Claudia A1 - Maiwald, Michael T1 - Interlaboratory Comparison of Low-Field NMR Spectrometers – Purities at 200 and 10 mmol/L N2 - Due to its advantages of being a direct comparison method, quantitative NMR spectroscopy (qNMR) becomes more and more popular in industry. While conventional high-field NMR systems are often associated with high investment and operational costs, the upcoming market of permanent-magnet based benchtop NMR systems show a considerable option for a lot of applications. The mobility of these systems allows to bring them more closely to the real production environment, e.g. for at-line quality control. In this work we present an interlaboratory comparison study investigating the qNMR performance of state-of-the-art benchtop NMR spectrometers. Therefore, BAM prepared two samples of a mixture of NMR reference standards tetramethylbenzene (TMB) and tetrachloronitrobenzene (TCNB) at concentration levels of 200 mM and 10 mM. These “ready-to-use” samples were sent to participant laboratories, which performed analysis on their benchtop NMR equipment of different vendors and fields from 43 to 80 MHz. Raw data was reported back and further investigated by using different data analysis methods at BAM. After this very first qNMR comparison study of benchtop NMR spectrometers show promising results, following studies are planned to cover more parts of the qNMR process, e.g. sample preparation and weighing, but also data analysis, as commonly done in similar studies for high-field NMR spectroscopy in industry and metrology. T2 - Quantitative NMR Methods for Reaction and Process Monitoring (NMRPM) CY - Kaiserslautern, Germany DA - 31.01.2019 KW - qNMR KW - Compact NMR spectroscopy KW - Interlaboratory Comparison PY - 2019 AN - OPUS4-47311 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -