TY - CONF A1 - Meyer, Klas A1 - Maiwald, Michael T1 - NMR Validation - Measurement Uncertainty N2 - There is a need within the NMR community to progress forward in exploring new facets in which we can use analytical techniques to advance our understanding of various systems. One aspect the NMR community hasn’t fully encompassed is the validation process, which also involves setting reference standards, establishing a common language that directly relates to NMR, communication relating to validation, and much more. This workshopcontribution starts with an overview on international metrology for qNMR spectroscopy. Since NMR is completely described by mathematical equations, the measurement unceartainty can directly be dreived from formula. Examples are presented. These are differentiated between type A and B evaluations. Finally the Expanded Unceartainty is defined. Since the user needs a risk-based unceartainty assessment, different "leagues" for routine, advanced, and high level needs are proposed to make clear, that no all sources of uncertainty have to be taken in considerention at practical levels. T2 - Practical Applications of NMR in Industry Conference (PANIC) 2019 - Validation Workshop CY - Hilton Head Island, USA DA - 04.03.2019 KW - Quantitative NMR Spectroscopy KW - qNMR KW - Uncertainty Evaluation KW - Weighing Uncertainty KW - NMR Method Validation PY - 2019 AN - OPUS4-47509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Ruiken, J.-P. A1 - Illner, M. A1 - Paul, Andrea A1 - Müller, D. A1 - Esche, E. A1 - Repke, J.-U. A1 - Maiwald, Michael T1 - Prozessanalytik für die moderne Verfahrenstechnik – Online-NMR- und -Raman-Spektroskopie im mizellaren Stoffsystem N2 - Homogen katalysierte Reaktionen sind wichtige Werkzeuge der chemischen Industrie. Milde Reaktionsbedingungen und hohe Selektivitäten führen zu einer energie- und ressourcenschonenden Produktion. Ein bedeutender Prozessschritt ist die Hydroformylierung. Hier kommen Kobalt- und Rhodiumkomplexe mit mehrzähnigen Liganden zum Einsatz, die zumeist in wässriger Lösung vorliegen. Die Anwendbarkeit beschränkt sich demnach auf kurzkettige Edukte mit hinreichender Wasserlöslichkeit. T2 - ProcessNet-Jahrestagung und 32. DECHEMA-Jahrestagung der Biotechnologen 2016 CY - Aachen, Germany DA - 12.09.2016 KW - Hydroformylierung KW - Mizellen KW - NMR-Spektroskopie KW - Raman-Spektroskopie KW - Chemometrie KW - Prozesssensoren KW - Prozessanalytik KW - Industrie PY - 2016 AN - OPUS4-37388 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Kipphardt, Heinrich A1 - Maiwald, Michael T1 - High-pressure qNMR spectroscopy in condensed- and gas-phase towards determination of impurities and compositions of gas mixtures N2 - Recent technical developments of NMR instruments such as in acquisition electronics and probe design allow detection limits of components in liquid mixtures in the lower ppm range (approx.. 5–10 ppm amount of substance). The major advantage of quantitative NMR spectroscopy (qNMR) is that it is a direct ratio method of analysis without the need of calibration. This means that the signal for a specific NMR-active nucleus (e.g., a proton) in an analyte can be compared and quantified by reference to a different nucleus of a separate compound, comparable to a counting of spins in the active volume of the spectrometer. A special application of qNMR in technical mixtures is the observation in the gas phase, which is rarely applied compared to liquid and solid NMR studies. Because of the low density it results in a reduced sensitivity, which can be improved by applying pressure. Therefore a high-pressure NMR setup was developed based on a commercially available NMR tube made of zirconia. This is currently tested up to 20 MPa, but can be extended up to 100 MPa with regard to pressure rating of its components. This work shows results of gas-phase application on natural-gas like reference gas mixtures produced at BAM, as well as investigations on liquefied petroleum gas mixtures (LPG) with high accuracy provided in constant-pressure piston cylinders. T2 - 35th Meeting of the CCQM-Gas Analysis Working Group, Workshop "Cutting edge research for gas metrology" CY - Caparica, Portugal DA - 13.10.2016 KW - Quantitative NMR spectroscopy KW - Gas-phase NMR KW - Reference gas mixtures KW - Liquefied petroleum gas PY - 2016 AN - OPUS4-37803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Maiwald, Michael T1 - Quantitative online NMR spectroscopy for industrial reaction and process monitoring N2 - Compact nuclear magnetic resonance (NMR) instruments make NMR spectroscopy and relaxometry accessible in industrial and harsh environments for reaction and process control. An increasing number of applications are reported. Robust field integration of NMR systems have to face explosion protection or integration into process control systems with short set-up times. Tis paves the way for industrial automation in real process environments. Automated data preparation and analysis are cornerstones for a breakthrough of NMR techniques for process control. Particularly, robust chemometrics as well as automated signal processing methods have to be (further) developed especially for NMR spectroscopy in process control. This becomes even more important for so called “smart sensors” providing the basis for the future project “Industrie 4.0”, and Industrial Internet of Things (IIoT), along with current requirements to process control, model based control, or soft sensing. Data analysis techniques are available but currently mostly used for off-line data analysis to detect the causes of variations in the product quality. T2 - Syngenta Face to Face Meeting Process Analytical Technology CY - Münchwilen, Switzerland DA - 12.09.2017 KW - Process monitoring KW - Online NMR spectroscopy KW - Reaction monitoring KW - Hydroformylation KW - Gas analysis KW - CONSENS KW - Indirect hard modeling PY - 2017 AN - OPUS4-41946 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Abele, M. A1 - Bornemann-Pfeiffer, Martin A1 - Döring, T. A1 - Falkenstein, S. A1 - Kern, S. A1 - Maiwald, Michael T1 - Benchtop NMR spectroscopy in chemical manufacturing: From hardware field integration to data modeling N2 - The use of benchtop-NMR instruments is constantly increasing during the recent years. Advantages of being affordable, portable and easy-to-operate without the need for trained staff make them especially interesting for industrial applications in quality control. However, applications of NMR spectroscopy as an online PAT tool are still very rare but offer a huge potential for process optimization and control. A key task to exploit this potential is hardware field integration of the lab-instruments in a rough environment of a chemical plant. Additionally, developments in automation and data evaluation are mandatory to ensure a robust unattended operation with low maintenance requirements. Here, we show an approach of a fully automated analyzer enclosure considering explosion safety, field communication, as well as environmental conditions in the field. Temperature sensitivity is still a limitation of benchtop-NMR instruments in flow applications. Recent developments of manufacturers allow for limited operation at static temperature levels, however, a dynamic system for continuous operation is still not available. Using a prototype system offering a larger bore, active temperature shielding studies with thermostated air were performed evaluating the performance. Automated data evaluation of NMR spectra using a modular indirect hard modeling (IHM) approach showed good results and flexibility. A second data analysis approach based on artificial neural networks (ANN) was evaluated.Therefore, amount of data was augmented to be sufficient for training. The results show comparable performance, while improving the calculation time tremendously, offering new ways to simultaneously evaluating large numbers of different models. T2 - Quantitative NMR Methods for Reaction and Process Monitoring (NMRPM) CY - Kaiserslautern, Germany DA - 24.05.2023 KW - Field integration KW - Benchtop-NMR KW - Process Analytical Technology PY - 2023 AN - OPUS4-57560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Rademann, K. A1 - Maiwald, Michael T1 - High-pressure NMR spectroscopy in condensed- and gas- phase T2 - 8th Internatiomal Gas Analysis Symposium T2 - 8th Internatiomal Gas Analysis Symposium CY - Rotterdam, Netherlands DA - 2015-06-10 PY - 2015 AN - OPUS4-35056 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Ruiken, J.-P. A1 - Kraemer, B. A1 - Illner, M. A1 - Müller, D. A1 - Esche, E. A1 - Paul, Andrea A1 - Wozny, G. A1 - Maiwald, Michael T1 - Quantitative NMR spectroscopy of technical mixtures and gases from elevated to high-pressure N2 - Recent technical developments of NMR instruments such as in acquisition electronics and probe design allow detection limits of components in liquid mixtures in the lower ppm range (approx.. 5–10 ppm amount of substance). The major advantage of quantitative NMR spectroscopy (qNMR) is that it is a direct ratio method of analysis without the need of calibration. This means that the signal for a specific NMR-active nucleus (e.g., a proton) in an analyte can be compared and quantified by reference to a different nucleus of a separate compound, comparable to a counting of spins in the active volume of the spectrometer. Technical mixtures can be investigated online directly next to a process setup by using flow probes. This makes it a promising method for process analytical applications, especially during process development in laboratory and pilot plant scale. With the growing market of Benchtop devices based on permanent magnets nowadays an integration of NMR spectroscopy in an industrial environment becomes reasonable. A special application of qNMR in technical mixtures is the observation in the gas phase, which is rarely applied compared to liquid and solid NMR studies. Because of the low density it results in a reduced sensitivity, which can be improved by applying pressure. Therefore a high-pressure NMR setup was developed based on a commercially available NMR tube made of zirconia. This is currently tested up to 20 MPa, but can be extended up to 100 MPa with regard to pressure rating of its components. This work shows results of gas-phase application on natural-gas like reference gas mixtures produced at BAM, as well as investigations on liquefied gas mixtures with high accuracy provided in piston cylinders. Besides that amine gas treatment and hydroformylation in a microemulsion represent two other examples of applications in process analytical technology. These show the potential of combination of online NMR spectroscopy with other spectroscopic methods, especially during model development for data evaluation. T2 - Presentation at Statoil Research Center CY - Trondheim, Norway DA - 27.05.2016 KW - Quantitative NMR spectroscopy KW - Process analytical technology KW - Gas-phase NMR PY - 2016 AN - OPUS4-36330 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Ruiken, J.-P. A1 - Illner, M. A1 - Müller, D. A1 - Paul, Andrea A1 - Esche, E. A1 - Westad, Frank A1 - Repke, J.-U. A1 - Maiwald, Michael T1 - Online spectroscopy in microemulsions – A process analytical approach for a hydroformylation mini-plant N2 - Within the Collaborative Research Center InPROMPT a novel process concept for the hydroformylation of long-chained olefins is studied in a mini-plant, using a rhodium complex as catalyst in the presence of syngas. Recently, the hydroformylation in micro¬emulsions, which allows for the efficient recycling of the expensive rhodium catalyst, was found to be feasible. However, the high sensitivity of this multi-phase system with regard to changes in temperature and composition demands a continuous observation of the reaction to achieve a reliable and economic plant operation. For that purpose, we tested the potential of both online NMR and Raman spectroscopy for process control. The lab-scale experiments were supported by off-line GC-analysis as a reference method. A fiber optic coupled probe of a process Raman spectrometer was directly integrated into the reactor. 25 mixtures with varying concentrations of olefin (1-dodecene), product (n-tridecanal), water, n-dodecane, and technical surfactant (Marlipal 24/70) were prepared according to a D-optimal design. Online NMR spectroscopy was implemented by using a flow probe equipped with 1/16” PFA tubing serving as a flow cell. This was hyphenated to the reactor within a thermostated bypass to maintain process conditions in the transfer lines. Partial least squares regression (PLSR) models were established based on the initial spectra after activation of the reaction with syngas for the prediction of unknown concentrations of 1-dodecene and n-tridecanal over the course of the reaction in the lab-scale system. The obtained Raman spectra do not only contain information on the chemical composition but are further affected by the emulsion properties of the mixtures, which depend on the phase state and the type of micelles. Based on the spectral signature of both Raman and NMR spectra, it could be deduced that especially in reaction mixtures with high 1-dodecene content the formation of isomers as a competitive reaction was dominating. Similar trends were also observed during some of the process runs in the mini-plant. The multivariate calibration allowed for the estimation of reactants and products of the hydroformylation reaction in both laboratory setup and mini-plant. T2 - 4th European Conference on Process Analytics and Control Technology (EuroPACT 2017) CY - Potsdam, Germany DA - 10.05.2017 KW - Process analytical technology KW - Online NMR spectroscopy KW - Online Raman spectroscopy KW - Microemulsions PY - 2017 AN - OPUS4-40185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Ruiken, J.-P. A1 - Illner, M. A1 - Müller, D. A1 - Paul, Andrea A1 - Esche, E. A1 - Westad, Frank A1 - Repke, J.-U. A1 - Maiwald, Michael T1 - Online spectroscopy in microemulsions – Process analytical technology for a hydroformylation mini-plant N2 - Within the Collaborative Research Center InPROMPT a novel process concept for the hydroformylation of long-chained olefins is studied in a mini-plant, using a rhodium complex as catalyst in the presence of syngas. Recently, the hydroformylation in micro¬emulsions, which allows for the efficient recycling of the expensive rhodium catalyst, was found to be feasible. However, the high sensitivity of this multi-phase system with regard to changes in temperature and composition demands continuous observation of the reaction to achieve a reliable and economic plant operation. For that purpose, we tested the potential of online NMR and Raman spectroscopy for process control. The lab-scale experiments were supported by data of offline GC analysis. A fiber optic coupled probe of a process Raman spectrometer was directly integrated into the reactor. 25 mixtures with varying concentrations of olefin (1-dodecene), product (n-tridecanal), water, n-dodecane, and technical surfactant (Marlipal 24/70) were prepared according to a D-optimal design. Online NMR spectroscopy was implemented by using a flow probe equipped with 1/16” PFA tubing serving as a flow cell. This was hyphenated to the reactor within a thermostated bypass to maintain process conditions. Partial least squares regression (PLSR) models were established based on the initial spectra after activation of the reaction with syngas for the prediction of unknown concentrations of 1-dodecene and n-tridecanal over the course of the reaction in the lab-scale system. The obtained Raman spectra do not only contain information on the chemical composition but are further affected by the emulsion properties of the mixtures, which depend on the phase state and the type of micelles. Based on the spectral signature of both Raman and NMR spectra, it could be deduced that especially in reaction mixtures with a high content of 1-dodecene the formation of isomers based on a competitive reaction was dominating. Similar trends were also observed during some of the process runs in the mini-plant. The multivariate calibration allowed for the estimation of reactants and products of the hydroformylation reaction in the laboratory setup, as well as in the field during the conducted mini-plant operation studies. T2 - ANAKON 2017 CY - Tübingen, Germany DA - 03.04.2017 KW - Prozessanalytik KW - Online-NMR-Spektroskopie KW - Online-Raman-Spektroskopie KW - Mikroemulsionen PY - 2017 AN - OPUS4-39691 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas T1 - High-pressure qNMR spectroscopy in condensed- and gas-phase towards determination of impurities and compositions of gas mixtures N2 - Recent technical developments of NMR instruments such as in acquisition electronics and probe design allow detection limits of components in liquid mixtures in the lower ppm range (approx.. 5–10ppm amount of substance). The major advantage of quantitative NMR spectroscopy (qNMR) is that it is a direct ratio method of analysis without the need of calibration. This means that the signal for a specific NMR-active nucleus (e.g., a proton) in an analyte can be compared and quantified by reference to a different nucleus of a separate compound, comparable to a counting of spins in the active volume of the spectrometer. A special application of qNMR in technical mixtures is the observation in the gas phase, which is rarely applied compared to liquid and solid NMR studies. Because of the low density it results in a reduced sensitivity, which can be improved by applying pressure. Therefore a high-pressure NMR setup was developed based on a commercially available NMR tube made of zirconia. This is currently tested up to 20 MPa, but can be extended up to 100 MPa with regard to pressure rating of its components. This work shows results of gas-phase application on natural-gas like reference gas mixtures produced at BAM, as well as investigations on liquefied petroleum gas mixtures (LPG) with high accuracy provided in constant pressure piston cylinders. T2 - qNMR Summit 2017 CY - Berlin, Germany DA - 16.03.2017 KW - Quantitative NMR spectroscopy KW - Gas-phase NMR KW - Reference gas mixtures KW - Liquefied petroleum gas PY - 2017 AN - OPUS4-39425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -