TY - CONF A1 - Meyer, Klas A1 - Gräßer, P. A1 - Kern, S. A1 - Maiwald, Michael T1 - Low-Field NMR Spectroscopy on Solid Dispersions A Flow Injection Method for End-Point Control of Azo Couplings for Industrial Pigment Production N2 - Global demand for pigments is expected to increase to around 13.4 million tons per year by 2030, representing approximately $22 billion – 5% of which will be azo pigments as the main organic pigments. Azo pigments, i.e., especially the azo bridge required for them, are almost exclusively produced in technology by the so-called azo coupling reaction in large-scale approaches on the scale of 50–100 cubic meters. Among other things, one of the reasons why large-scale production itself is still essentially discontinuous is the lack of analytical methods for a continuous azo pigment synthesis. In an azo coupling process, an aromatic amine is diazotized to form the diazonium compound (diazo compound), which then reacts with a coupling component, i.e., "couples". A slight excess of the coupler is desired for the end of the reaction, which stoichiometrically consumes the remaining (harmful) diazo compound, i.e., below 500 ppm. This is carried out with a manual spotting reaction of a fast-binding coupler. To carry out continuous azo coupling, care must be taken to ensure that the actual coupling reaction proceeds as rapidly as possible, i.e., preferentially, compared with possible side reactions. Reliable measuring methods are thus a decisive criterion for the useful performance of a continuous azo pigment synthesis. An analytical online procedure is difficult due to several limitations at once: solid dispersions extremely limit the range of reproducible analytical procedures. In addition, the appearance of a signal (e.g., excess of a starting material) in the ppm range must be reliably detected against the matrix background. The back-titration method and benchtop NMR spectroscopy were used to overcome these problems. We present a feasibility study for a suitable process analysis with benchtop NMR spectroscopy on disperse systems for equimolar dosing of the "diazotization" or "coupling" sub-step in azo coupling, which was carried out in cooperation with a chemical company. This could replace tedious manual spotting T2 - SMASH Small molecule NMR conference 2023 CY - Baveno, Italy DA - 17.09.2023 KW - Benchtop NMR KW - Dispersions KW - Process Analytical Technology KW - Process monitoring PY - 2023 AN - OPUS4-58399 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Bornemann-Pfeiffer, Martin A1 - Lademann, J. A1 - Kraume, M. A1 - Maiwald, Michael T1 - Contributions Towards Variable Temperature Shielding for Compact NMR Instruments N2 - The application of compact NMR instruments to hot flowing samples or exothermically reacting mixtures is limited by the temperature sensitivity of permanent magnets. Typically, such temperature effects directly influence the achievable magnetic field homogeneity and hence measurement quality. The internal-temperature control loop of the magnet and instruments is not designed for such temperature compensation. Passive insulation is restricted by the small dimensions within the magnet borehole. Here, we present a design approach for active heat shielding with the aim of variable temperature control of NMR samples for benchtop NMR instruments using a compressed airstream which is variable in flow and temperature. Based on the system identification and surface temperature measurements through thermography, a model predictive control was set up to minimise any disturbance effect on the permanent magnet from the probe or sample temperature. This methodology will facilitate the application of variable-temperature shielding and, therefore, extend the application of compact NMR instruments to flowing sample temperatures that differ from the magnet temperature. T2 - SMASH Small molecule NMR conference 2023 CY - Baveno, Italy DA - 17.09.2023 KW - Benchtop NMR KW - Temperature Control KW - Process Analytical Technology KW - Flow NMR PY - 2023 AN - OPUS4-58400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bornemann-Pfeiffer, Martin A1 - Meyer, Klas A1 - Lademann, J. A1 - Kraume, M. A1 - Maiwald, Michael T1 - Contributions towards variable temperature shielding for compact NMR instruments N2 - The application of compact NMR instruments to hot flowing samples or exothermically reacting mixtures is limited by the temperature sensitivity of permanent magnets. Typically, such temperature effects directly influence the achievable magnetic field homogeneity and hence measurement quality. The internal-temperature control loop of the magnet and instruments is not designed for such temperature compensation. Passive insulation is restricted by the small dimensions within the magnet borehole. Here, we present a design approach for active heat shielding with the aim of variable temperature control of NMR samples for benchtop NMR instruments using a compressed airstream which is variable in flow and temperature. Based on the system identification and surface temperature measurements through thermography, a model predictive control was set up to minimise any disturbance effect on the permanent magnet from the probe or sample temperature. This methodology will facilitate the application of variable-temperature shielding and, therefore, extend the application of compact NMR instruments to flowing sample temperatures that differ from the magnet temperature. KW - Benchtop NMR KW - Continuous Processes KW - Inline Analytics KW - Model Predictive Control KW - Process Analytical Tecnology KW - Temperature Control PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-579219 SN - 1097-458X SP - 1 EP - 10 PB - John Wiley & Sons Ltd. AN - OPUS4-57921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Peters, Claudia A1 - Maiwald, Michael T1 - Interlaboratory Comparison of Low-Field NMR Spectrometers – Purities at 200 and 10 mmol/L - Preliminary Results N2 - Due to its advantages of being a direct comparison method, quantitative NMR spectroscopy (qNMR) becomes more and more popular in industry. While conventional high-field NMR systems are often associated with high investment and operational costs, the upcoming market of permanent-magnet based benchtop NMR systems show a considerable option for a lot of applications. The mobility of these systems allows to bring them more closely to the real production environment, e.g. for at-line quality control. In this work we present an interlaboratory comparison study investigating the qNMR performance of state-of-the-art benchtop NMR spectrometers. Therefore, BAM prepared two samples of a mixture of NMR reference standards tetramethylbenzene (TMB) and tetrachloronitrobenzene (TCNB) at concentration levels of 200 mM and 10 mM. These “ready-to-use” samples were sent to participant laboratories, which performed analysis on their benchtop NMR equipment of different vendors and fields from 43 to 80 MHz. Raw data was reported back and further investigated by using different data analysis methods at BAM. After this very first qNMR comparison study of benchtop NMR spectrometers show promising results, following studies are planned to cover more parts of the qNMR process, e.g. sample preparation and weighing, but also data analysis, as commonly done in similar studies for high-field NMR spectroscopy in industry and metrology. T2 - 7th Practical Applications of NMR in Industry Conference (PANIC) CY - Hilton Head Island, SC, USA DA - 04.03.2019 KW - qNMR KW - Benchtop NMR KW - Interlaboratory Comparison PY - 2019 AN - OPUS4-47512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Peters, Claudia A1 - Maiwald, Michael T1 - Interlaboratory comparison of low-field NMR spectrometers – Purities at 200 and 10 mmol/L - Preliminary results N2 - Due to its advantages of being a direct comparison method, quantitative NMR spectroscopy (qNMR) becomes more and more popular in industry. While conventional high-field NMR systems are often associated with high investment and operational costs, the upcoming market of permanent-magnet based benchtop NMR systems show a considerable option for a lot of applications. The mobility of these systems allows to bring them more closely to the real production environment, e.g. for at-line quality control. In this work we present an interlaboratory comparison study investigating the qNMR performance of state-of-the-art benchtop NMR spectrometers. Therefore, BAM prepared two samples of a mixture of NMR reference standards tetramethylbenzene (TMB) and tetrachloronitrobenzene (TCNB) at concentration levels of 200 mM and 10 mM. These “ready-to-use” samples were sent to participant laboratories, which performed analysis on their benchtop NMR equipment of different vendors and fields from 43 to 80 MHz. Raw data was reported back and further investigated by using different data analysis methods at BAM. After this very first qNMR comparison study of benchtop NMR spectrometers show promising results, following studies are planned to cover more parts of the qNMR process, e.g. sample preparation and weighing, but also data analysis, as commonly done in similar studies for high-field NMR spectroscopy in industry and metrology. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2019 KW - qNMR KW - Benchtop NMR KW - Interlaboratory Comparison PY - 2019 AN - OPUS4-47662 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Bornemann-Pfeiffer, Martin A1 - Kern, S. A1 - Guhl, Svetlana A1 - Wander, Lukas A1 - Döring, T. A1 - Falkenstein, S. A1 - Abele, M. A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy in the field: A Versatile PAT Tool for Production of Specialty Chemicals N2 - Companies of chemical industry find themselves more often in a rapidly changing environment, e.g., due to variability of raw material quality or energy costs and efficiency. Process optimization and new process concepts become more and more important. For example, flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds like exothermic reactions with high heat dissipation. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as explosion safety, field communication, and robust evaluation of sensor data. Field studies in modular and conventional production plant setups show promising results gaining process knowledge for further optimization. NMR appeared as preeminent online analytical method and allow using a modular data analysis approach, which can even serve as reliable reference method for further calibration-dependent PAT applications (e.g., NIR spectroscopy). Based on experiences from these field studies an improved analyzer enclosure setup was developed and built, including the option of a secondary method besides NMR spectroscopy. Integrated control systems allow for a flexible implementation based on the available automation infrastructure at the chemical plant or pilot plant setup. In the future, fully integrated and intelligently interconnecting “smart” PAT systems and processes have the potential speed up the setup of production equipment for chemicals and pharmaceuticals and therefore help to reduce the time-to-market. T2 - Practical Applications of NMR in Industry Conference (PANIC) 2022 CY - La Jolla, CA, USA DA - 16.10.2022 KW - Process Analytical Technology KW - Benchtop NMR KW - Modular production PY - 2022 AN - OPUS4-56090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Bornemann-Pfeiffer, Martin A1 - Kern, S. A1 - Guhl, Svetlana A1 - Wander, Lukas A1 - Döring, T. A1 - Falkenstein, S. A1 - Abele, M. A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy in the field: A Versatile PAT Tool for Production of Specialty Chemicals N2 - Chemical companies must find new paths to successfully survive in a changing environment, especially by utilizing the potential of digital technologies. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Therefore, fully automated process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. A commercially available benchtop NMR spectrometer was integrated to the full requirements of chemical production environment such as explosion safety, field communication, and robust evaluation of sensor data. It was used for direct loop advanced process control and real-time optimization of the process. Field studies in modular and conventional production plants show promising results gaining process knowledge. NMR appeared as preeminent online analytical method and allow using a modular data analysis tool, which even served as reliable reference method for further PAT applications (e.g. NIR spectroscopy). In the future, fully integrated and interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - ProcessNet and DECHEMA-BioTechNet Jahrestagungen 2022 with 13th ESBES Symposium CY - Aachen, Germany DA - 12.09.2022 KW - Process Analytical Technology KW - Benchtop NMR KW - Modular production PY - 2022 AN - OPUS4-55918 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Bornemann-Pfeiffer, Martin A1 - Kern, S. A1 - Guhl, Svetlana A1 - Wander, Lukas A1 - Döring, T. A1 - Falkenstein, S. A1 - Abele, M. A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy in the field: A Versatile PAT Tool for Production of Specialty Chemicals N2 - Chemical companies must find new paths to successfully survive in a changing environment, especially by utilizing the potential of digital technologies. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Therefore, fully automated process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. A commercially available benchtop NMR spectrometer was integrated to the full requirements of chemical production environment such as explosion safety, field communication, and robust evaluation of sensor data. It was used for direct loop advanced process control and real-time optimization of the process. Field studies in modular and conventional production plants show promising results gaining process knowledge. NMR appeared as preeminent online analytical method and allow using a modular data analysis tool, which even served as reliable reference method for further PAT applications (e.g. NIR spectroscopy). In the future, fully integrated and interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - 17. AKPAT Kolloquium 2022 CY - Amersfoort, Netherlands DA - 19.09.2022 KW - Process Analytical Technology KW - Benchtop NMR KW - Modular production PY - 2022 AN - OPUS4-55919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -