TY - JOUR A1 - Dabah, Eitan A1 - Kannengießer, Thomas A1 - Mente, Tobias A1 - Beyer, Katrin A1 - Brauser, Stephan T1 - Quantification of hydrogen effective diffusion coefficients and effusion behavior in duplex stainless steel weld metals N2 - Modern methods like carrier gas hot extraction enable the quantification of dissolved hydrogen as well as the determination of the hydrogen trapping and diffusion behavior. This method was applied in order to compare for the first time the hydrogen diffusion and trapping behavior in electrochemically charged and welded duplex stainless steel (1.4462). Characteristic extraction temperatures (400, 650, and 900 °C) were used to quantify the amounts of diffusible hydrogen and trapped hydrogen for the base material and the weld metal, and in order to calculate the effective diffusion coefficients corresponding to the specific temperature. The comparison of the charging methods showed that electrochemically charged samples have a higher content of diffusible hydrogen than the welded samples. In addition, the effusion times increase in welded samples, which indicate a higher amount of trapped hydrogen. In electrochemically charged weld samples, a significant lower concentration of hydrogen was determined than in the base material. In addition, the effective diffusion coefficients were calculated for every microstructure and charging method. It was found that the base material has a higher effective hydrogen diffusion coefficient than that of the weld metal. This effect is due to the tortuous path of hydrogen diffusion in the weld metal. KW - Carrier gas hot extraction KW - Diffusion KW - Effusion KW - Hydrogen KW - Trapping PY - 2013 U6 - https://doi.org/10.1007/s40194-013-0051-5 SN - 0043-2288 SN - 1878-6669 VL - 57 IS - 4 SP - 561 EP - 567 PB - Springer CY - Oxford AN - OPUS4-29417 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Rhode, Michael A1 - Münster, C. A1 - Mente, Tobias A1 - Böllinghaus, Thomas ED - Somerday, B.P. ED - Sofronis, P. T1 - Influence of experimental conditions and calculation method on hydrogen diffusion coefficient evaluation at elevated temperatures N2 - Literature provides a wide range of hydrogen diffusion coefficients for low alloyed steels used in power plants. In fact, experimental boundary conditions and calculation methods have influence on the determination of these coefficients. The diffusion and trapping behavior in creep-resistant steel 7CrMoVTiB10-10 has been studied. Based on experimental carrier gas hot extraction (CGHE) data, a numerical model has been developed to describe the hydrogen transport and respective hydrogen distribution at elevated temperatures. The numerical results suggest that common calculation methods for diffusion coefficients are limited for experimental data analysis. The sample preparation time before CGHE experiment influences the determined diffusion coefficients with the consequence that non-homogeneous hydrogen concentration profiles have to be considered in the simulations. KW - Temperature effect KW - Hydrogen diffusion KW - Creep-resistant steel KW - Hydrogen assisted cracking KW - Carrier gas hot extraction PY - 2017 SN - 978-0-7918-6138-7 U6 - https://doi.org/10.1115/1.861387_ch56 SP - 495 EP - 503 PB - ASME CY - New York, USA ET - 1 AN - OPUS4-42502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Schaupp, Thomas A1 - Münster, C. A1 - Mente, Tobias A1 - Kannengießer, Thomas A1 - Böllinghaus, Thomas T1 - Hydrogen determination in welded specimens by carrier gas hot extraction - a review on the main parameters and their effects on hydrogen measurement N2 - Carrier gas hot extraction (CGHE) is a commonly applied technique for determination of hydrogen in weld joints using a thermal conductivity detector (TCD) for hydrogen measurement. The CGHE is based on the accelerated hydrogen effusion due to thermal activation at elevated temperatures. The ISO 3690 standard suggests different specimen geometries as well as necessary minimum extraction time vs. temperature. They have the biggest influence on precise hydrogen determination. The present study summarizes the results and experience of numerous test runs with different specimen temperatures, geometries (ISO 3690 type B and small cylindrical samples), and factors that additionally influence hydrogen determination. They are namely specimen surface (polished/as-welded), limited TCD sensitivity vs. specimen volume, temperature measurement vs. effects of PI-furnace controller, as well as errors due to insufficient data assessment. Summarized, the temperature is the driving force of the CGHE. Two different methods are suggested to increase the heating rate up to the desired extraction temperature without changing the experimental equipment. Suggestions are made to improve the reliability of hydrogen determination depended on the hydrogen signal stability during extraction accompanied by Evaluation of the recorded data. Generally, independent temperature measurement with dummy specimens is useful for further data analysis, especially if this data is used for calculation of trapping kinetics by thermal desorption analysis (TDA). KW - Hydrogen KW - Carrier gas hot extraction KW - Experimental design KW - Thermal conductivity device PY - 2019 U6 - https://doi.org/10.1007/s40194-018-0664-9 SN - 0043-2288 VL - 63 IS - 2 SP - 511 EP - 526 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-47603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -