TY - CONF A1 - Mente, Tobias A1 - Böllinghaus, Thomas ED - Somerday, B. P. ED - Sofronis, P. T1 - Mesoscale Numerical Simulation of Hydrogen-Assisted Cracking in Duplex Stainless Steels N2 - A two-dimensional numerical mesoscale model has been created representing a microstructure of a typical 2205/1.4462 duplex stainless steel to further elucidate the mechanisms of hydrogen-assisted crack initiation and propagation in multiphase non-hydride forming metallic microstructures. Hydrogen-assisted cracking (HAC) was simulated by considering different stress and strain behavior as well as different diffusion behavior in both phases. For simulation of crack initiation and propagation, the element elimination technique has been applied. The model allows the simulation of path-free crack propagation which contributes to a better understanding of the HAC process in two-phase microstructures. As a particular result, the analyses revealed that a global macroscopic elastic deformation might already cause plastic deformation in both phases entailing respective HAC. T2 - International Hydrogen Conference CY - Jakson Lake Lodge, Wyoming, USA DA - 11.09.2016 KW - Computer simulation KW - Cracking (Materials) KW - Fracture (Process) KW - Hydrogen KW - Stainless steel PY - 2017 SN - 978-0-7918-6138-7 U6 - https://doi.org/10.1115/1.861387_ch67 SP - 589 EP - 596 PB - The American Society of Mechanical Engineers (ASME) CY - New York AN - OPUS4-45680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -