TY - JOUR A1 - Mente, Tobias A1 - Böllinghaus, Thomas T1 - kModeling of hydrogen distribution in a duplex stainless steel N2 - Quite a number of models for hydrogen distribution in steels and welds have been developed in the past 20 years. They reach from simple analytical models to more complex two and three dimensional finite element simulations. So far, these models have been used to simulate hydrogen distribution in homogeneous microstructure. This paper contributes to numerical simulation of hydrogen distribution in heterogeneous microstructure, e. g. in a duplex stainless steel microstructure consisting of two phase fractions. Under appropriate conditions, such as cathodic protection, it is possible that hydrogen is absorbed leading to material embrittlement and possibly initiating hydrogen assisted cracking. In order to avoid hydrogen assisted cracking in duplex stainless steels, it is of great interest to know more about the diffusion behavior of the ferrite and austenite phase. A numerical model has been developed that operates on the mesoscale and enables simulation of hydrogen transport in the various phases of a metallic material. As a first application of this model, hydrogen distribution in a duplex stainless steel 1.4462, consisting of approximately equal portions of ferrite and austenite, was simulated using the finite element program package ANSYS. The results reflect the dependency of hydrogen distribution on the microstructural alignment of the ferrite and austenite phase fractions. Crack-critical areas can thus be identified, provided the critical strain-hydrogen combination is known for the respective microstructural phase. KW - Finite element KW - Simulation KW - Duplex stainless steel KW - Hydrogen KW - Diffusion KW - Weld metal KW - Microstructure PY - 2012 SN - 0043-2288 SN - 1878-6669 VL - 56 IS - 11/12 SP - 66 EP - 78 PB - Springer CY - Oxford AN - OPUS4-27483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dabah, Eitan A1 - Kannengießer, Thomas A1 - Mente, Tobias A1 - Beyer, Katrin A1 - Brauser, Stephan T1 - Quantification of hydrogen effective diffusion coefficients and effusion behavior in duplex stainless steel weld metals N2 - Modern methods like carrier gas hot extraction enable the quantification of dissolved hydrogen as well as the determination of the hydrogen trapping and diffusion behavior. This method was applied in order to compare for the first time the hydrogen diffusion and trapping behavior in electrochemically charged and welded duplex stainless steel (1.4462). Characteristic extraction temperatures (400, 650, and 900 °C) were used to quantify the amounts of diffusible hydrogen and trapped hydrogen for the base material and the weld metal, and in order to calculate the effective diffusion coefficients corresponding to the specific temperature. The comparison of the charging methods showed that electrochemically charged samples have a higher content of diffusible hydrogen than the welded samples. In addition, the effusion times increase in welded samples, which indicate a higher amount of trapped hydrogen. In electrochemically charged weld samples, a significant lower concentration of hydrogen was determined than in the base material. In addition, the effective diffusion coefficients were calculated for every microstructure and charging method. It was found that the base material has a higher effective hydrogen diffusion coefficient than that of the weld metal. This effect is due to the tortuous path of hydrogen diffusion in the weld metal. KW - Carrier gas hot extraction KW - Diffusion KW - Effusion KW - Hydrogen KW - Trapping PY - 2013 U6 - https://doi.org/10.1007/s40194-013-0051-5 SN - 0043-2288 SN - 1878-6669 VL - 57 IS - 4 SP - 561 EP - 567 PB - Springer CY - Oxford AN - OPUS4-29417 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nietzke, Jonathan A1 - Rhode, Michael A1 - Mente, Tobias A1 - Kannengießer, Thomas T1 - Experimental and numerical characterization of hydrogen diffusion in thick-walled submerged arc welded joint of S420G2+M offshore steel grade N2 - Offshore wind turbines are an important goal in national energy strategies worldwide. Foundation structures are manufactured from submerged arc welded (SAW) plates with thicknesses up to 200 mm. In that connection, high-strength steels like the S420G2+M are more and more applied offering the possibility for increased stability and load-bearing capacity of the foundations. These offshore steel grades can show a susceptibility for delayed hydrogen assisted cold cracking of the weld joints. For that purpose, a minimum waiting time (MWT) of up to 48 h (dependent on applied standards) is recommended before non-destructive testing is allowed and conducted. But this concept is based on older steel grades that have been used for three or more decades. Nowadays, the metallurgical improvements (clean steels, proper rolling, and heat treatment) of base materials and well as welding consumables must be anticipated. Hence, the MWT concept should be critically discussed as it is assumed to be very conservative. For that reason, the focus of this study was to investigate the diffusion behavior in S420G2+M steel and its multi-layer SAW joint. Electrochemical permeation experiments were carried at room temperature. Boundary conditions were anticipated in terms of using different sample thicknesses. From the experimental data, hydrogen diffusion coefficients and absorbed diffusible hydrogen concentrations had been calculated. It was shown that hydrogen diffusion in the base material is increased compared to the weld metal. In addition, the sample thickness had a significant on the calculated diffusion coefficients. The minimum and maximum diffusion coefficients had been used for numerical modelling of the hydrogen diffusion in the welding joint. It became clear that a MWT must be always regarded together with a critical initial diffusible hydrogen concentration for the evaluation of a possible delayed cracking as diffusion times were mostly > 48 h due to the thick plates. T2 - 4th International Conference on Metals and Hydrogen - Steely & Hydrogen 2022 CY - Ghent, Belgium DA - 11.10.2022 KW - Hydrogen KW - Submerged arc welding KW - Diffusion KW - Minimum waiting time KW - Electrochemical permeation PY - 2022 SP - 1 EP - 11 CY - Ghent, Belgium AN - OPUS4-56075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Richter, Tim A1 - Mente, Tobias A1 - Mayr, P. A1 - Nitsche, A. T1 - Thickness and microstructure effect on hydrogen diffusion in creep‑resistant 9% Cr P92 steel and P91 weld metal N2 - Martensitic 9% Cr steels like P91 and P92 show susceptibility to delayed hydrogen assisted cracking depending on their microstructure. In that connection, effective hydrogen diffusion coefficients are used to assess the possible time-delay. Limited data on room temperature diffusion coefficients reported in literature vary widely by several orders of magnitude (mostly attributed to variation in microstructure). Especially P91 weld metal diffusion coefficients are rare so far. For that reason, electrochemical permeation experiments had been conducted using P92 base metal and P91 weld metal (in as-welded and heat-treated condition) with different thicknesses. From the results obtained, diffusion coefficients were calculated using to different methods, time-lag, and inflection point. Results show that, despite microstructural effects, the sample thickness must be considered as it influences the calculated diffusion coefficients. Finally, the comparison of calculated and measured hydrogen concentrations (determined by carrier gas hot extraction) enables the identification of realistic diffusion coefficients. KW - Creep-resistant steel KW - Diffusion KW - Hydrogen assisted cracking KW - Welding KW - Electrochemical permeation PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-540645 SN - 0043-2288 SP - 1 EP - 16 PB - Springer Nature Switzerland AG AN - OPUS4-54064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Nietzke, Jonathan A1 - Mente, Tobias A1 - Kannengießer, Thomas T1 - Diffusionsmessungen in UP-Mehrlagenschweißgut als effektives Tool gegen verzögerte Kaltrissbildung in Dickblechschweißungen N2 - Offshore-Windenergieanlagen bilden einen zentralen Bestandteil der zukünftigen Energieerzeugung. Hierzu notwendige Gründungs- und Turmstrukturen werden vorrangig aus UP-geschweißten Blechen aus hochfesten niedriglegierten Stählen mit Dicken bis zu 200 mm hergestellt. Die großen Blechdicken begünstigen hohe Schweißeigenspannungen und lange Diffusionswege für z. B. über den Schweißprozess eingebrachten Wasserstoff. Damit steigt das Risiko für eine wasserstoffunterstützte Kaltrissbildung (WKB) an. Zum sichereren Ausschluss von WKB in den geschweißten Komponenten wird in Abhängigkeit der Nahtgröße, Wärmeeinbringung und Stahlsorte eine Mindestwartezeit (MWZ) von bis zu 48 h empfohlen, bevor die zerstörungsfreie Prüfung durchgeführt wird. Es ist allerdings offen, ob die empfohlene MWZ zu konservativ ist. Einflüsse sind hier bspw. die schwierige Bewertung des Wasserstoffdiffusionsverhaltens im heterogenen UP-Mehrlagen-Schweißgut (SG) im Vergleich zum Grundwerkstoff (GW). Zudem sind nur sehr begrenzt H-Diffusionskoeffizienten für UP-Mehrlagen-SG als Grundlage zur Abschätzung des Zeitintervalls einer möglichen verzögerten Kaltrissbildung (somit MWZ) oder auch für Nachwärmprozeduren zur Wasserstoffreduktion (keine MWZ) verfügbar. Verlässliche H-Diffusionskoeffizienten sind daher ein adäquates Tool zur Bewertung des Risikos einer verzögerten WKB. Dieser Beitrag beschreibt Untersuchungen zur Charakterisierung der Wasserstoffdiffusionsverhalten in UP-Mehrlagen-SG eines 60 mm dicken Bleches einer Offshore-Stahlgüte. Dazu wurden Proben unterschiedlicher Dicke aus dem reinen Schweißgut extrahiert und über elektrochemische Permeation und Trägergasheißextraktion im Temperaturbereich bis 400 °C sehr interessante Ergebnisse zu den korrespondierenden Diffusionskoeffizienten erarbeitet. T2 - DVS Congress 2021 CY - Online meeting DA - 14.09.2021 KW - UP-Schweißen KW - Wasserstoff KW - Kaltriss KW - Permeation KW - Diffusion PY - 2021 SN - 978-3-96144-146-4 VL - 371 SP - 448 EP - 459 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-53369 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Mente, Tobias A1 - Steppan, E. A1 - Kannengießer, Thomas A1 - Steger, J. T1 - Hydrogen trapping in T24 Cr-Mo-V steel weld joints - microstructure effect vs. experimental influence on activation energy for diffusion N2 - Hydrogen-assisted cracking is a critical combination of local microstructure, mechanical load and hydrogen concentration. Welded microstructures of low-alloyed creep-resistant Cr-Mo-V steels show different hydrogen trapping kinetics. This influences the adsorbed hydrogen concentration as well as the diffusion by moderate or strong trapping. A common approach to describe hydrogen traps is by their activation energy that is necessary to release hydrogen from the trap. In the present study, Cr-Mo-V steel T24 (7CrMoVTiB10-10) base material and TIG weld metal were investigated. Electrochemically hydrogen charged specimens were analyzed by thermal desorption analysis (TDA) with different linear heating rates. The results show two different effects. At first, the microstructure effect on trapping is evident in terms of higher hydrogen concentrations in the weld metal and increased activation energy for hydrogen release. Secondly, it is necessary to monitor the real specimen temperature. A comparison between the adjusted heating rate and the real specimen temperature shows that the calculated activation energy varies by factor two. Thus, the trap character in case of the base material changes to irreversible at decreased temperature. Hence, the effect of the experimental procedure must be considered as well if evaluating TDA results. Finally, realistic temperature assessment is mandatory for calculation of activation energy via TDA. KW - Creep-resistant steel KW - Hydrogen assisted cracking KW - Thermal desorption analysis KW - Welding KW - Microstructure KW - Diffusion PY - 2018 U6 - https://doi.org/10.1007/s40194-017-0546-6 SN - 0043-2288 SN - 1878-6669 VL - 62 IS - 2 SP - 277 EP - 287 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-44505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Richter, Tim A1 - Mayr, P. A1 - Nitsche, A. A1 - Mente, Tobias A1 - Böllinghaus, Thomas T1 - Hydrogen diffusion in creep-resistant 9% Cr P91 multi-layer weld metal N2 - Welded components of P91 9% Cr steel demand for careful welding fabrication with necessary post weld heat treatment (PWHT). Before the PWHT, a hydrogen removal heat treatment is necessary for avoidance of hydrogen assisted cracking (HAC). In this context, the microstructure and temperature-dependent hydrogen diffusion is important, and reliable diffusion coefficients of P91 weld metal are rare. For that reason, the diffusion behavior of P91 multi-layer weld metal was investigated for as-welded (AW) and PWHT condition by electrochemical permeation experiments at room temperature and carrier gas hot extraction (CGHE) from 100 to 400 °C. Hydrogen diffusion coefficients were calculated, and the corresponding hydrogen concentration was measured. It was ascertained that both heat treatment conditions show significant differences. At room temperature the AW condition showed significant hydrogen trapping expressed by to seven times lower diffusion coefficients. A preferred diffusion direction was found in perpendicular direction expressed by high permeability. The CGHE experiments revealed lower diffusion coefficients for the AW condition up to 400 °C. In this context, a hydrogen concentration of approximately 21 ml/100 g was still trapped at 100 °C. For that reason, a certain HAC susceptibility of as-welded P91 weld metal cannot be excluded, and hydrogen removal should be done before PWHT. KW - Creep resisting materials KW - Diffusion KW - Hydrogen KW - Weld metal KW - Post weld heat treatment KW - Microstructure PY - 2020 U6 - https://doi.org/10.1007/s40194-019-00828-8 SN - 0043-2288 VL - 64 IS - 2 SP - 267 EP - 281 PB - Springer AN - OPUS4-50471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -