TY - JOUR A1 - Braun, Ulrike A1 - Lorenz, Edelgard A1 - Weimann, Christiane A1 - Sturm, Heinz A1 - Karimov, I. A1 - Ettl, J. A1 - Meier, R. A1 - Wohlgemuth, W. A. A1 - Berger, H. A1 - Wildgruber, M. T1 - Mechanic and surface properties of central-venous port catheters after removal: A comparison of polyurethane and Silicon rubber materials N2 - Central venous port devices made of two different polymeric materials, thermoplastic polyurethane (TPU)and silicone rubber (SiR), were compared due their material properties. Both naïve catheters as well as catheters after removal from patients were investigated. In lab experiments the influence of various chemo-therapeutic solutions on material properties was investigated, where as the samples after removal were compared according to the implanted time inpatient. The macroscopic,mechanical performance was assessed with dynamic, specially adapted tests for elasticity. The degradation status of the materials was determined with common tools of polymer characterisation, such as infrared spectroscopy, molecular weight measurements and various methods of thermal analysis. The surface morphology was an alysed using scanning electron microscopy. A correlation between material properties and clinical performance was proposed. The surface morphology and chemical composition of the polyurethane catheter materials can potentially result in increased susceptibility of the catheter to bloodstream infections and thrombotic complications. The higher mechanic failure,especially with increasing implantation time of the silicone catheters is related to the lower mechanical performance compared to the polyurethane material as well as loss of barium sulphate filler particles near the surface of the catheter. This results in preformed microscopic notches, which act as predetermined sites of fracture. KW - Thermoplastic polyurethane (TPU) KW - Silicone rubber (SiR) KW - Catheters KW - Central venous access port KW - Complication KW - Structure propertyrelationship KW - Mechanical testing PY - 2016 U6 - https://doi.org/10.1016/j.jmbbm.2016.08.002 SN - 1751-6161 SN - 1878-0180 VL - 64 SP - 281 EP - 291 PB - Elsevier Ltd. AN - OPUS4-37178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wildgruber, M. A1 - Lueg, C. A1 - Borgmeyer, S. A1 - Karimov, I. A1 - Braun, Ulrike A1 - Kiechle, M. A1 - Meier, R. A1 - Koehler, M. A1 - Ettl, J. A1 - Berger, H. T1 - Polyurethane versus silicone catheters for central venous port devices implanted at the forearm N2 - Purpose: We aimed to analyse short and long-term complications of polyurethane (PU) versus silicone catheters used in totally implantable venous-access ports (TIVAPs) implanted at the forearm. Methods: Retrospective analysis of 698 consecutively implanted TIVAPs was performed. Primary end-points were defined as rates of major complications associated with either type of central venous port catheter. Technical success rate, device service interval as well as minor complications not requiring port explantation were defined as secondary end-points. Results: A total of 698 port devices were implanted in 681 patients, 396 equipped with a PU catheter, 302 with a silicone catheter. The technical success rate was 99.9% with no major periprocedural complications. During follow-up a total of 211 complications in 146 patients were observed (1.0/1000 catheter days), 183 occurred associated with PU catheters (1.8/100 catheter days), 28 (0.3/1000 catheter days) with silicone catheters (log rank test p < 0.0001). Catheter-related bloodstream infections as well as thrombotic complications occurred significantly more frequently with PU catheters, while silicone catheters exhibited a trend towards a higher rate of mechanical failure such as disconnection or catheter rupture. Major complications requiring explantation of the device occurred more frequently with PU-based catheters (10.6%) compared to silicone catheter carrying ports (4.6%, log rank test p < 0.001). KW - Chemotherapy KW - Central venous access port KW - Complication KW - Thrombosis KW - Infection PY - 2016 U6 - https://doi.org/10.1016/j.ejca.2016.02.011 SN - 0959-8049 VL - 59 SP - 113 EP - 124 PB - Elsevier Ltd. CY - Oxford, UK AN - OPUS4-36288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, X.-D. A1 - Meier, R.J. A1 - Schmittlein, C. A1 - Schreml, S. A1 - Schäferling, Michael A1 - Wolfbeis, Otto S. T1 - A water-sprayable, thermogelating and biocompatible polymer host for use in fluorescent chemical sensing and imaging of oxygen, pH values and temperature N2 - We report on the use of a sprayable and thermogelating biomaterial (Poloxamer™; a.k.a. Pluronic™) in optical imaging of pH values, local oxygen and temperature. The material is highly biocompatible and easy to handle. We also show that the material is well permeable to oxygen (thus making it a good choice for use in oxygen sensors), and is stable in liquid solution and at elevated temperature. We demonstrate its applicability in optical sensors for oxygen, pH and temperature. This was accomplished by incorporating appropriate luminescent probes in various kinds of microparticles (which act as hosts for the probes and prevent dye leaching and aggregation), and then dispersing the microparticles in the thermogelating polymer. The resulting sensor gels were deposited on the surface of interest via spraying at temperatures of <20 °C. At these temperatures, the gels adhere well to the target, even on uneven surfaces such as skin, wounds, and bacterial cultures. If temperature is risen to above 25 °C, the gels form a thin and soft but solid sensing layer which, however, can be simply removed from surface of interest by cooling and wiping it off, or by washing with water. Sprayable thermogelating sensors present obvious advantages over other sensors by not causing damage to the surface of interest. In our perception, the sensing materials also have wide further applicability in sensors for other species including clinically relevant gases, enzyme substrates (such as glucose or lactate) and ions. KW - Chemical sensing KW - Imaging KW - Biocompatible polymer KW - Sprayable sensor KW - Fluorescence KW - Poloxamer KW - Pluronic KW - Oxygen sensor KW - pH sensor KW - Temperature sensor PY - 2015 U6 - https://doi.org/10.1016/j.snb.2015.05.082 SN - 0925-4005 SN - 1873-3077 VL - 221 SP - 37 EP - 44 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-33855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ondrus, V. A1 - Meier, R.J. A1 - Klein, C. A1 - Henne, U. A1 - Schäferling, Michael A1 - Beifuss, U. T1 - Europium 1,3-di(thienyl)propane-1,3-diones with outstanding properties for temperature sensing N2 - The synthesis of novel Eu complexes with 1,3-di(thienyl)propane-1,3-diones as ligands as well as their luminescence properties in different polymers are reported. The new temperature sensitive paints (TSPs) exhibit not only exceptional high temperature sensitivity over a wide range of temperatures but are also characterized by negligible pressure sensitivity and marked photostability. This is why they are outstandingly suitable for applications, e.g. in aerodynamics and hydrodynamics. KW - Temperature sensitive paint KW - Eu diketonate KW - Luminescence KW - Intensity method KW - Lifetime method PY - 2015 U6 - https://doi.org/10.1016/j.sna.2015.07.023 SN - 0924-4247 VL - 233 SP - 434 EP - 441 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-33856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meier, R.J. A1 - Simbürger, J.M.B. A1 - Soukka, T. A1 - Schäferling, Michael T1 - A FRET based pH probe with broad working range applicable to referenced ratiometric dual wavelength and luminescence lifetime read out N2 - A luminescent probe for determination of pH was designed based on a Förster resonance energy transfer (FRET) system, combining a europium chelate as the donor and carboxynaphtho-fluorescein as a pH sensitive acceptor. The FRET system enables referenced pH detection in an exceptional broad dynamic range from pH 3 to 9. PY - 2015 U6 - https://doi.org/10.1039/c5cc00144g SN - 0022-4936 SN - 0009-241x SN - 1359-7345 SN - 1364-548x VL - 51 IS - 28 SP - 6145 EP - 6148 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-33858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, X.-d. A1 - Meier, R.J. A1 - Schäferling, Michael A1 - Bange, S. A1 - Lupton, J.M. A1 - Sperber, M. A1 - Wegener, J. A1 - Ondrus, V. A1 - Beifuss, U. A1 - Henne, U. A1 - Klein, C. A1 - Wolfbeis, Otto S. T1 - Two-photon excitation temperature nanosensors based on a conjugated fluorescent polymer doped with an Europium probe N2 - A strongly fluorescent organic semiconducting polymer doped with a highly temperature dependent fluorescent europium(III) complex is converted into a nanosized material that is capable of optically sensing temperature (T) in the range from 0 to 50 °C via two-photon excitation at 720 nm. The nanosensors are prepared from a blue-fluorescent polyfluorene that acts as both a lightharvesting antenna (to capture two-photon energy) and an energy donor in a fluorescence resonance energy transfer (FRET) system. The photonic energy absorbed by the polymer is transferred to the T-sensitive red-luminescent europium complex contained in the nanoparticles. The close spatial proximity of the donor and the acceptor warrants efficient FRET. A poly(ethylene glycol)- co-poly(propylene oxide) block copolymer is also added to render the particles biocompatible. It is shown that T can be calculated from a) the intensity of the luminescence of the europium complex, b) the ratio of the intensities of the red and blue luminescence, or c) the T-dependent luminescence lifetime of the Eu(III) complex. KW - Optical sensor KW - Temperature sensor KW - Nanosensor KW - FRET system PY - 2016 UR - http://onlinelibrary.wiley.com/doi/10.1002/adom.201600601/abstract U6 - https://doi.org/10.1002/adom.201600601 SN - 2195-1071 VL - 4 IS - 11 SP - 1854 EP - 1859 PB - Wiley-VCH CY - Weinheim AN - OPUS4-38737 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -