TY - JOUR A1 - Crouzier, L. A1 - Feltin, N. A1 - Delvallée, A. A1 - Pellegrino, Francesco A1 - Maurino, V. A1 - Cios, Grzegorz A1 - Tokarski, T. A1 - Salzmann, Christoph A1 - Deumer, J. A1 - Gollwitzer, C. A1 - Hodoroaba, Vasile-Dan T1 - Correlative analysis of the dimensional properties of bipyramidal titania nanoparticles by complementing electron microscopy with other methods N2 - In this paper, the accurate determination of the size and size distribution of bipyramidal anatase nanoparticles (NPs) after deposition as single particles on a silicon substrate by correlative Scanning Electron Microscopy (SEM) with Atomic Force Microscopy (AFM) analysis is described as a new measurement procedure for metrological purposes. The knowledge of the exact orientation of the NPs is a crucial step in extracting the real 3D dimensions of the particles. Two approaches are proposed to determine the geometrical orientation of individual nano‐bipyramides: (i) AFM profiling along the long bipyramid axis and (ii) stage tilting followed by SEM imaging. Furthermore, a recently developed method, Transmission Kikuchi Diffraction (TKD), which needs preparation of the crystalline NPs on electron‐transparent substrates such as TEM grids, has been tested with respect to its capability of identifying the geometrical orientation of the individual NPs. With the NPs prepared homogeneously on a TEM grid, the transmission mode in a SEM, i.e., STEM‐in‐SEM (or T‐SEM), can be also applied to extract accurate projection dimensions of the nanoparticles from the same sample area as that analysed by SEM, TKD and possibly AFM. Finally, Small Angle X‐ray Scattering (SAXS) can be used as an ensemble technique able to measure the NPs in liquid suspension and, with ab‐initio knowledge of the NP shape from the descriptive imaging techniques, to provide traceable NP size distribution and particle concentration. KW - Nanoparticles KW - Complex-shape KW - Bipyramid KW - Electron microscopy KW - AFM KW - Size measurements KW - TKD KW - STEM-in-SEM KW - SAXS KW - Nanoparticle concentration KW - Correlative analysis PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-539888 SN - 2079-4991 VL - 11 IS - 12 SP - 1 EP - 19 PB - MDPI CY - Basel AN - OPUS4-53988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pellegrino, Francesco A1 - Ortel, Erik A1 - Mielke, Johannes A1 - Schmidt, R. A1 - Maurino, V. A1 - Hodoroaba, Vasile-Dan T1 - Customizing New Titanium Dioxide Nanoparticles with Controlled Particle Size and Shape Distribution: A Feasibility Study Toward Reference Materials for Quality Assurance of Nonspherical Nanoparticle Characterization N2 - An overview is given on the synthesis of TiO2 nanoparticles with well-defined nonspherical shapes (platelet like, bipyramidal, and elongated), with the focus on controlled, reproducible synthesis, as a key requirement for the production of reference materials with homogeneous and stable properties. Particularly with regard to the nanoparticle shapes, there is a high need of certified materials, solely one material of this type being commercially available since a few months (elongated TiO2). Further, measurement approaches with electron microscopy as the golden method to tackle the nanoparticle shape are developed to determine accurately the size and shape distribution for such nonspherical particles. A prerequisite for accurate and easy (i.e., automated) image analysis is the sample preparation, which ideally must ensure a deposition of the nanoparticles from liquid suspension onto a substrate such that the particles do not overlap, are solvent-free, and have a high deposition density. Challenges in the Synthesis of perfectly monodispersed and solvent-free TiO2 nanoparticles of platelet and acicular shapes are highlighted as well as successful measurement approaches on how to extract from 2D projection electron micrographs the most accurate spatial information, that is, true 3D size, for example, of the bipyramidal nanoparticles with different geometrical orientations on a substrate. KW - Nanoparticles KW - Titanium dioxide KW - Reference materials KW - Standardisation KW - Particle size and shape distribution PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-538849 VL - 24 IS - 6 SP - 1 EP - 10 PB - Wiley-VCH AN - OPUS4-53884 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Hörenz, Christoph A1 - Pellegrino, F. A1 - Maurino, V. A1 - Durand, B. A1 - Taché, O. T1 - Nanoparticle size, shape, and concentration measurement at once – two VAMAS pre-standardization projects ready to start N2 - A case study on the TEM analysis of the size and shape distribution of TiO2 bipyramidal nanoparticles prepared on TEM grids was included in the recently published ISO standard ISO 21363. It was agreed to organize at a later stage a second inter-lab comparison with the nanoparticles distributed to the participants as a liquid suspension. Protocols for uniform nanoparticle deposition on suited supports developed and optimized within the EMPIR nPSize project are also prepared to be distributed. For this, we have chosen the VAMAS platform (www.vamas.org) which offers an excellent international infrastructure of laboratories with high competence in nanoparticle measurement. The VAMAS technical working area dedicated to nanoparticle measurement is TWA 34 ‘Nanoparticle populations’. For this type of nanoparticles, the size and shape distributions are the primary parameters to be reported. Due to the good deposition protocols developed, an automated image analysis is enabled (in contrast to the manual analysis of irregular TiO2 nanoparticles. In parallel with the TiO2 nanoparticle exercise, two spherical SiO2 nanoparticle samples with bi-modal size distributions (nominal relative number concentrations of 1:1 and 10:1) are prepared for a second VAMAS inter-lab comparison. Here, the nanoparticle concentration is the primary parameter to be measured. For the imaging methods it is targeted to measure the relative nanoparticle concentrations of the two modes. For the absolute nanoparticle concentration to be measured by imaging methods it is necessary to control the volume of the liquid suspension deposited on the substrate and to obtain such a homogeneous nanoparticle deposition on the substrate which allows to count (or extrapolate) all the deposited particles. KW - Electron microscopy KW - Inter-laboratory comparison KW - Nanoparticles KW - SiO2 KW - TiO2 KW - VAMAS PY - 2021 U6 - https://doi.org/10.1017/S1431927621008126 VL - 27 IS - Suppl. 1 SP - 2250 EP - 2251 PB - Cambridge University Press AN - OPUS4-53124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pellegrino, Francesco A1 - Maurino, V. A1 - Hodoroaba, Vasile-Dan T1 - Morphological Characterization and Chemical Identification of TiO2 Nanoparticles Doped with Ultrafine Metal Particles for Enhanced Photocatalytical Activity N2 - The conversion of solar energy into electricity and solar fuels is of crucial importance for a green and sustainable future. Water splitting using semiconductor photo-catalysts is considered a sustainable method to produce clean hydrogen (H2) fuel. Nevertheless, H2 photo-production efficiency remains still low, although extensive research works to understand better the mechanisms of the Hydrogen Evolution Reaction (HER) and the Oxygen Evolution Reaction (OER) are being carried out. In this respect, TiO2 is a key photoactive material, usually employed with a co-catalyst deposited onto the surface to enhance charge carriers’ separation and catalyze surface charge transfer reactions. The deposition of a co-catalyst on the TiO2 nanoparticle surface represents one successful way to enhance the activity of the photocatalyst through a modification of its surface and redox properties. In this context, high-resolution scanning electron microscopy coupled with elemental analysis by energy-dispersive X-ray spectroscopy (EDS) is fundamental for studying and understanding the effect of the nanoparticle morphology on the functional properties of shape-controlled TiO2 crystals (bipyramides, platelets, and elongated particles). Different types of metal-semiconductor combinations, TiO2 shapes and dopant metals (Ag, Pt, etc) and metal concentrations will be discussed. KW - Nanoparticles KW - Photocatalysis KW - Electron microscopy KW - EDS KW - Metal-semiconductor PY - 2022 U6 - https://doi.org/10.1017/S1431927622010078 VL - 28 IS - Suppl. 1 SP - 2658 EP - 2660 PB - Cambridge University Press AN - OPUS4-55436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Iannarelli, L. A1 - Giovannozzi, A. M. A1 - Morelli, F. A1 - Viscotti, F. A1 - Bigini, P. A1 - Maurino, V. A1 - Spotto, G. A1 - Martra, G. A1 - Ortel, Erik A1 - Hodoroaba, Vasile-Dan A1 - Rossi, A. M. A1 - Diomede, L. T1 - Shape engineered TiO2 nanoparticles in Caenorhabditis elegans: a Raman imaging based approach to assist tissue-specific toxicological studies N2 - Titanium dioxide (TiO₂) nanoparticles (NPs) are one of the main sources of the nanoparticulate matter to which humans are directly exposed and several studies have demonstrated their potential toxic effects. The in vivo detailed spatial distribution of TiO₂ NPs is investigated herein for the first time, using a 2D chemical imaging analysis based on confocal Raman spectroscopy. The invertebrate nematode C. elegans was employed as a prototypical model of living organisms. Rod, bipyramidal and quasispherical engineered TiO₂ NPs with different primary particle sizes and agglomeration states were prepared, characterized and then administered to nematodes. Exploiting the typical fingerprint of TiO₂ in the Raman spectrum, we monitored the biodistribution of NPs inside the worm using a non-invasive, label-free method. The high spatial resolution chemical imaging and the specificity of the Raman technique in the localization of TiO₂ NPs helped in the design of behavioral C. elegans studies aimed at elucidating the relationship among the size, shape, and agglomeration state of NPs and their ability to induce specific toxic effects. Rod-shaped NPs were the most toxic, greatly impairing pharyngeal function, reproduction and larval growth; this indicates that the rod shape, more than the bipyramidal and spherical shapes, enables NPs to interact with biological systems. These findings indicate that this Raman-nematode combined approach represents a step forward in the field of detection of NPs in living organisms, and being rapid and inexpensive enough, it can be applied as the first screening for the ability of NPs to biodistribute and exert toxicological properties in vivo. KW - Titanium dioxide KW - Nanoparticles KW - Caenorhabdtis elegans KW - Micro-Raman imaging KW - Nanotoxicology PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-369695 UR - http://pubs.rsc.org/en/content/articlelanding/2016/ra/c6ra09686g#!divAbstract SN - 2046-2069 VL - 6 SP - 70501 EP - 70509 PB - Royal Society of Chemistry CY - Thomas Graham House, Cambridge AN - OPUS4-36969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maurino, V. A1 - Pellutiè, L A1 - Pellegrino, F. A1 - Ortel, Erik A1 - Hodoroaba, Vasile-Dan A1 - Taloi, D. A1 - Isopescu, R. T1 - Experimental Approaches and Paradigms for Shape controlled Synthsis of TiO2 Nanoparticles T2 - International summer workshop NANOSCIENCE meets METROLOGY CY - Erice, Italy DA - 2015-07-27 PY - 2015 AN - OPUS4-33874 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mansfeld, Ulrich A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Hodoroaba, Vasile-Dan T1 - Towards accurate analysis of particle size distribution for non-spherically shaped nanoparticles as quality control materials N2 - Most industrial nanoparticles have non-spherical shapes and also possess polydisperse size distributions, and due to their agglomeration/ aggregation state are difficult (or even impossible) to be addressed individually. Further, driven by regulatory purposes related to the identification of a material as a nanomaterial, the accurate measurement of the smallest dimension of a (nano)particulate material makes the analysis even more complex. In the first phase of the EU Project nPSize - Improved traceability chain of nanoparticle size measurements (https://www.bam.de/Content/DE/Projekte/laufend/nPSize/npsize.html), the efforts are focused on synthesis of nanoparticles of well-defined, non-spherical shape. Following candidates of reference materials (CRM) with certifiable particle size (distribution) are under characterization with respect to their homogeneity and stability: (i) titania nanoplatelets (10-15 nm thickness x 50-60 nm lateral), (ii) titania bipyramides (~60 nm length x 40 nm width), (iii) titania acicular particles (100 nm length x 15-20 nm width; aspect ratio 5.5/6), (iv) gold nanorods (~10 nm width x 30 nm length), and (v) gold nanocubes (~55 nm x 55 nm x 55 nm). KW - Nanoparticles KW - Imaging KW - Non-spherical KW - Reference material KW - Particle size distribution PY - 2019 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/towards-accurate-analysis-of-particle-size-distribution-for-nonspherically-shaped-nanoparticles-as-quality-control-materials/CD48E9298865410124E22837D8CF73A0 U6 - https://doi.org/10.1017/S1431927619012376 SN - 1431-9276 SN - 1435-8115 VL - 25 IS - Suppl. 2 SP - 2328 EP - 2329 PB - Cambridge University Press AN - OPUS4-48856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pellegrino, F. A1 - Sordello, F. A1 - Mino, L. A1 - Minero, C. A1 - Hodoroaba, Vasile-Dan A1 - Martra, G. A1 - Maurino, V. T1 - Formic acid photoreforming for hydrogen production on shape-controlled anatase TiO2 nanoparticles: Assessment of the role of fluorides, {101}/{001} surfaces ratio, and platinization N2 - Hydrogen production via formate photoreforming on TiO2 is characterized by marked dependence on the ratio between {101} and {001} surfaces for anatase nanoparticles. We observed higher rates of hydrogen Evolution with the increase of the {101} facets presence, owing to their reductive nature. This helps the Pt photodeposition in the early stages of Irradiation and, then, the hydrogen ion reduction reaction. The selective photodeposition of 2 nm Pt nanoparticles on {101} facets was confirmed by transmission electron microscopy (TEM) micrographs. The results are confirmed also by experiments carried out without the use of Pt as cocatalyst and by photoelectrochemical measurements. The work also explains the marginal effect of the fluorination on the H2 evolution. KW - Titanium dioxide KW - Fluoride KW - Platinum KW - Nanoparticles KW - Controlled-shape KW - Hydrogen photoproduction KW - Surface PY - 2019 UR - https://pubs.acs.org/doi/10.1021/acscatal.9b01861 U6 - https://doi.org/10.1021/acscatal.9b01861 SN - 2155-5435 VL - 9 IS - 8 SP - 6692 EP - 6697 PB - ACS Publications AN - OPUS4-48355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pellegrino, F. A1 - Isopescu, R. A1 - Pellutiè, L. A1 - Sordello, F. A1 - Rossi, A. M. A1 - Ortel, Erik A1 - Martra, G. A1 - Hodoroaba, Vasile-Dan A1 - Maurino, V. T1 - Machine learning approach for elucidating and predicting the role of synthesis parameters on the shape and size of TiO2 nanoparticles N2 - In the present work a series of design rules are developed in order to tune the morphology of TiO2 nanoparticles through hydrothermal process. Through a careful experimental design, the influence of relevant process parameters on the synthesis outcome are studied, reaching to the develop predictive models by using Machine Learning methods. The models, after the validation and training, are able to predict with high accuracy the synthesis outcome in terms of nanoparticle size, polydispersity and aspect ratio. Furthermore, they are implemented by reverse engineering approach to do the inverse process, i.e. obtain the optimal synthesis parameters given a specific product characteristic. For the first time, it is presented a synthesis method that allows continuous and precise control of NPs morphology with the possibility to tune the aspect ratio over a large range from 1.4 (perfect truncated bipyramids) to 6 (elongated nanoparticles) and the length from 20 to 140 nm. KW - Machine learning KW - Nanoparticles KW - Titanium dioxide KW - Size KW - Shape KW - Synthesis PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-515084 VL - 10 IS - 1 SP - 18910 PB - Springer Nature AN - OPUS4-51508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Cios, G. A1 - Tokarski, T. A1 - Mansfeld, Ulrich A1 - Ortel, Erik A1 - Mielke, Johannes A1 - Pellegrino, F. A1 - Maurino, V. T1 - Towards 3D Understanding of Non-spherical Nanoparticles by Transmission Kikuchi Diffraction (TKD) for Improved Particle Size Distribution by Electron Microscopy N2 - In this paper one refined approach is applied to determine the exact orientation of bipyramidal TiO2 nanoparticles prepared with good dispersion as almost isolated particles on a carbon TEM grid. The advantages of the recently developed high-throughput Transmission Kikuchi Diffraction (TKD) are used to identify quickly and reliably the geometrical orientation of the crystalline TiO2 nanoparticle bipyramids (anatase) on a statistically relevant number of particles. KW - Nanoparticles KW - Transmission Kikuchi Diffraction (TKD) KW - Electron microscopy KW - TiO2 KW - 3D PY - 2020 U6 - https://doi.org/10.1017/S1431927620013999 VL - 26 IS - S2 SP - 260 EP - 261 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -