TY - CONF A1 - Maul, Ronald A1 - Mallwitz, F. A1 - Koch, Matthias A1 - Nehls, Irene T1 - Evaluierung und Validierung eines fluoreszenzpolarimetrischen Probenvorbereitungs- und Messverfahrens zur Mykotoxinanalyse T2 - ANAKON 2011 CY - Zurich, Switzerland DA - 2011-03-22 PY - 2011 AN - OPUS4-23319 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maul, Ronald A1 - Sommerschuh, Katja A1 - Koch, Matthias A1 - Nehls, Irene T1 - Der Einfluss von Verdauenzymen auf die Bioverfügbarkeit von Mykotoxinen T2 - 48. Wissenschaftlicher Kongress der Deutschen Gesellschaft für Ernährung CY - Potsdam, Germany DA - 2011-03-16 PY - 2011 AN - OPUS4-23320 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maul, Ronald A1 - Schwake-Anduschus, C. A1 - Münzing, M. T1 - Darstellung des Verteilungsprofils von Fusarientoxinen im Weizenkorn T2 - 65. Tagung für Müllerei-Technologie CY - Detmold DA - 2014-09-09 PY - 2014 AN - OPUS4-32438 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maul, Ronald A1 - Warth, B. A1 - Schebb, N.H. A1 - Krska, R. A1 - Koch, Matthias A1 - Sulyok, M. T1 - In vitro glucuronidation kinetics of deoxynivalenol by human and animal microsomes and recombinant human UGT enzymes N2 - The mycotoxin deoxynivalenol (DON), formed by Fusarium species, is one of the most abundant mycotoxins contaminating food and feed worldwide. Upon ingestion, the majority of the toxin is excreted by humans and animal species as glucuronide conjugate. First in vitro data indicated that DON phase II metabolism is strongly species dependent. However, kinetic data on the in vitro metabolism as well as investigations on the specific enzymes responsible for DON glucuronidation in human are lacking. In the present study, the DON metabolism was investigated using human microsomal fractions and uridine-diphosphoglucuronyltransferases (UGTs) as well as liver microsomes from five animal species. Only two of the twelve tested human recombinant UGTs led to the formation of DON glucuronides with a different regiospecificity. UGT2B4 predominantly catalyzed the formation of DON-15-O-glucuronide (DON-15GlcA), while for UGT2B7 the DON-3-O-glucuronide (DON-3GlcA) metabolite prevailed. For human UGTs, liver, and intestinal microsomes, the glucuronidation activities were low. The estimated apparent intrinsic clearance (Clapp,int) for all human UGT as well as tissue homogenates was <1 mL/min mg protein. For the animal liver microsomes, moderate Clapp,int between 1.5 and 10 mL/min mg protein were calculated for carp, trout, and porcine liver. An elevated glucuronidation activity was detected for rat and bovine liver microsomes leading to Clapp,int between 20 and 80 mL/min mg protein. The obtained in vitro data points out that none of the animal models is suitable for estimating the human DON metabolism with respect to the metabolite pattern and formation rate. KW - Deoxynivalenol KW - Glucuronidation KW - Uridine-diphosphoglucuronyltransferases (UGT) KW - Human recombinant UGT KW - Trichothecene KW - Phase II metabolism PY - 2015 DO - https://doi.org/10.1007/s00204-014-1286-7 SN - 0340-5761 SN - 1432-0738 VL - 89 IS - 6 SP - 949 EP - 960 PB - Springer CY - Berlin ; Heidelberg [u.a.] AN - OPUS4-33204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schloß, Svenja A1 - Wedell, Ines A1 - Koch, Matthias A1 - Rohn, S. A1 - Maul, Ronald T1 - Biosynthesis and characterization of 15N6-labeled phomopsin A, a lupin associated mycotoxin produced by Diaporthe toxica N2 - The hepatotoxin phomopsin A (PHO-A), a secondary metabolite mainly produced by the fungus Diaporthe toxica, occurs predominantly on sweet lupins. Along with the growing interest in sweet lupins for food and feed commodities, concerns have been raised about fungal infestations, and consequently, about the determination of PHO-A. High performance liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) represents the most suitable analytical technique for sensitive and selective detection of mycotoxins including PHO-A. However, isotopic labeled substances are needed as internal standards for a reliable and convenient quantification. As no isotope standard for PHO-A is currently available, a biosynthesis of fully 15N6-labeled PHO-A was established by cultivation of D. toxica on defined media containing Na15NO3 and 15N-labeled yeast extract as the only nitrogen sources. The identity of 15N6-PHO-A was confirmed by high resolution mass spectrometry. The new 15N6-labeled standard will facilitate the method development for PHO-A including a more accurate quantification by LC-MS/MS. KW - Phomopsin A KW - Lupins KW - Diaporthe toxica KW - Stable isotope dilution assay KW - Isotopic labeled internal standard KW - Biosynthesis PY - 2015 DO - https://doi.org/10.1016/j.foodchem.2014.12.056 SN - 0308-8146 VL - 177 SP - 61 EP - 65 PB - Elsevier CY - Amsterdam [u.a.] ; Jena AN - OPUS4-32464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwake-Anduschus, C. A1 - Proske, Matthias A1 - Sciurba, E. A1 - Muenzing, K. A1 - Koch, Matthias A1 - Maul, Ronald T1 - Distribution of deoxynivalenol, zearalenone, and their respective modified analogues in milling fractions of naturally contaminated wheat grains N2 - Mycotoxins are among the most abundant contaminants in food and feed worldwide. Therefore, in the EU maximum levels are established, e.g. for the frequently occurring Fusarium toxins deoxynivalenol (DON) and zearalenone (ZEA). Additional to DON and ZEA, modified mycotoxins are present in naturally contaminated grain products contributing significantly to the exposure of humans and animals with mycotoxins. Up to now data on the spatial distribution of many (masked) mycotoxins in the kernels of wheat are missing. The aim of the present study was to investigate the amounts of DON and ZEA as well as their most abundant derivatives DON-3-glucoside (DON-3G), 3- and 15-acetyl-DON, ZEA-14- and 16-glucoside and ZEA-14-sulphate (ZEA-14S) in mill fractions of naturally contaminated wheat batches using HPLC-MS/MS. The investigated distribution pattern in ten milling fractions is comparable among the three investigated different wheat batches. Interestingly, DON and DON-3G were found to be present to similar amounts in all fractions. In bran, the levels were only slightly higher than in the endosperm. By contrast, for ZEA and ZEA-14S a significantly higher amount of toxin is located in the fibre-rich fractions. The relative mass proportion of DON-3G comprises for only between 2.9 and 11.2% of the free DON, while the relative mass proportion of ZEA-14S is estimated to even exceed the amount of free ZEA in certain fractions. Acetylated DON derivatives and ZEA-glucosides were only detected in low amounts. The experimental results show that a significant reduction of the ZEA and ZEA-14S level in wheat flour is feasible by applying milling technology strategies. However, the almost evenly distribution of DON and DON-3G in all fractions does not allow for the technological removal of relevant toxin amounts. Furthermore, the relative share of masked forms was higher for ZEA derivatives than for the DON conjugates in the investigated wheat lots. KW - Mass spectrometry KW - Fusarium mycotoxins KW - Masked mycotoxin KW - Flour extraction KW - Bran PY - 2015 DO - https://doi.org/10.3920/WMJ2014.1818 SN - 1875-0710 SN - 1875-0796 VL - 8 IS - 4 SP - 433 EP - 443 PB - Wageningen Academic Publishers CY - Wageningen AN - OPUS4-33833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maul, Ronald A1 - Borzekowski, Antje A1 - Drewitz, Tatjana A1 - Keller, Julia A1 - Pfeifer, Dietmar A1 - Kunte, Hans-Jörg A1 - Koch, Matthias A1 - Rohn, S. T1 - Biosynthesis of zearalenone conjugates by fungi N2 - Zearalenone (ZEN) and its sulfate and glucoside conjugates have been detected in (a broad variety of) food and feed commodities1. Both conjugated derivatives are formed as part of fungal or plant secondary metabolism and thus, belong to the group of modified mycotoxins2. After consumption of contaminated foodstuff, the conjugates can be hydrolyzed by human intestinal microbiota leading to liberation of ZEN that implies an underestimation of the true ZEN exposure. In order to include ZEN conjugates in routine analysis, as well as for toxicological investigation reliable standards are needed. The objective of the present study was to develop a simple and economic method for biosynthesis of ZEN conjugates. Preceding experiments on the biotransformation of ZEN by Rhizopus and Aspergillus species showed a mixed metabolite formation3. Therefore, these known ZEN conjugating fungal strains were screened for their potential to selectively synthesize the ZEN derivatives ZEN-14-sulfate (Z14S), ZEN-14-glucoside (Z14G) and ZEN-16-glucoside (Z16G). The screening was conducted by adding ZEN to liquid fungal cultures. Cultivation conditions and ZEN incubation time were varied. All media samples were analyzed for metabolite formation by HPLC-MS/MS. Z14S was exclusively formed by A. oryzae. Under optimized conditions a specific biosynthesis of Z14G by R. oryzae and Z16G by R. oligosporus was achieved. After liquid-liquid-extraction and preparative chromatographic cleanup 1H-NMR purities of ≥ 73% for Z14S, ≥ 82% for Z14G and ≥ 50% for Z16G were obtained. In addition, a consecutive biosynthesis was developed by first using Fusarium graminearum for ZEN biosynthesis on rice based liquid medium. After inactivation of Fusarium the subsequent conjugation reaction was conducted utilizing Aspergillus and Rhizopus species under the various optimized conditions. In this study an easy and cost-efficient biosynthesis for Z14S, Z14G and Z16G was developed. The developed biosynthesis could be also used for other metabolites like ZEL conjugates. Our results of the in vitro screening indicate also the formation of a ZEL-glucoside and α ZEL-sulfate as major metabolites by R. oryzae. In sum, under optimized cultivation conditions fungi can be easily utilized for a targeted and stereospecific synthesis of ZEN conjugates. T2 - 10th World Mycotoxin Forum Conference CY - Amsterdam, The Netherlands DA - 12.03.2018 KW - Mycotoxins KW - Food safety KW - Analytical standards PY - 2018 AN - OPUS4-44547 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Borzekowski, Antje A1 - Anggriawan, R. A1 - Auliyati, M. A1 - Kunte, Hans-Jörg A1 - Koch, Matthias A1 - Rohn, S. A1 - Karlovsky, P. A1 - Maul, Ronald T1 - Formation of Zearalenone Metabolites in Tempeh Fermentation N2 - Tempeh is a common food in Indonesia, produced by fungal fermentation of soybeans using Rhizopus sp., as well as Aspergillus oryzae, for inoculation. Analogously, for economic reasons, mixtures of maize and soybeans are used for the production of so-called tempeh-like products. For maize, a contamination with the mycoestrogen zearalenone (ZEN) has been frequently reported. ZEN is a mycotoxin which is known to be metabolized by Rhizopus and Aspergillus species. Consequently, this study focused on the ZEN transformation during tempeh fermentation. Five fungal strains of the genera Rhizopus and Aspergillus, isolated from fresh Indonesian tempeh and authentic Indonesian inocula, were utilized for tempeh manufacturing from a maize/soybean mixture (30:70) at laboratory-scale. Furthermore, comparable tempeh-like products obtained from Indonesian markets were analyzed. Results from the HPLC-MS/MS analyses show that ZEN is intensely transformed into its metabolites alpha-zearalenol (alpha-ZEL), ZEN-14-sulfate, alpha-ZEL-sulfate, ZEN-14-glucoside, and ZEN-16-glucoside in tempeh production. alpha-ZEL, being significantly more toxic than ZEN, was the main metabolite in most of the Rhizopus incubations, while in Aspergillus oryzae fermentations ZEN-14-sulfate was predominantly formed. Additionally, two of the 14 authentic samples were contaminated with ZEN, alpha-ZEL and ZEN-14-sulfate, and in two further samples, ZEN and alpha-ZEL, were determined. Consequently, tempeh fermentation of ZEN-contaminated maize/soybean mixture may lead to toxification of the food item by formation of the reductive ZEN metabolite, alpha-ZEL, under model as well as authentic conditions. KW - Modified mycotoxins KW - Zearalenone sulfate KW - a-zearalenol KW - Food fermentation KW - Rhizopus and Aspergillus oryzae PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-491126 DO - https://doi.org/10.3390/molecules24152697 VL - 24 IS - 15 SP - 2697 PB - MDPI AN - OPUS4-49112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kittler, Katrin A1 - Hurtaud-Pessel, D. A1 - Maul, Ronald A1 - Kolrep, F. A1 - Fessard, V. T1 - In vitro metabolism of the cyanotoxin cylindrospermopsin in HepaRG cells and liver tissue fractions N2 - No evidence for phase I metabolites of the cyanotoxin cylindrospermopsin (CYN) was given using HepaRG cells and different liver tissue fractions when studying metabolic conversion. Although the application of ketoconazole, a CYP3A4 inhibitor, led to a decreased cytotoxicity of CYN, no metabolites were detected applying high resolution mass spectrometry. Quantification of non-modified CYN led to recovery rates of almost 100%. Consequently, reduction of CYN toxicity in the presence of metabolism inhibiting agents must be attributed to alternative pathways. KW - Cylindrospermopsin KW - Metabolism KW - Liver tissue fractions KW - HepaRG cells KW - LC-HRMS KW - Quantification KW - Cyanotoxin PY - 2016 DO - https://doi.org/10.1016/j.toxicon.2015.11.007 SN - 0041-0101 SN - 1879-3150 VL - 110 SP - 47 EP - 50 PB - Elsevier CY - Oxford [u.a.] AN - OPUS4-35222 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maul, Ronald A1 - Greer, B. A1 - Campbell, K. A1 - Elliott, C.T. T1 - Detection of freshwater cyanotoxins and measurement of masked microcystins in tilapia from Southeast Asian aquaculture farms N2 - Recently, there has been a rise in freshwater harmful algal blooms (HABs) globally, as well as increasing aquaculture practices. HABs can produce cyanotoxins, many of which are hepatotoxins. An ultra-performance liquid chromatography tandem mass spectrometry method was developed and validated for nine cyanotoxins across three classes including six microcystins, nodularin, cylindrospermopsin and anatoxin-a. The method was used to analyse free cyanotoxin(s) in muscle (n = 34), liver (n = 17) and egg (n = 9) tissue samples of 34 fish sourced from aquaculture farms in Southeast Asia. Conjugated microcystin was analysed by Lemieux oxidation to ascertain the total amount of microcystin present in muscle. Some tilapia accumulated free microcystin-LR in the muscle tissue at a mean of 15.45 μg/kg dry weight (dw), with total microcystin levels detected at a mean level of 110.1 μg/kg dw, indicating that the amount of conjugated or masked microcystin present in the fish muscle accounted for 85% of the total. Higher levels of cyanotoxin were detected in the livers, with approximately 60% of those tested being positive for microcystin-LR and microcystin-LF, along with cylindrospermopsin. Two fish from one of the aquaculture farms contained cylindrospermopsin in the eggs; the first time this has been reported. The estimated daily intake for free and total microcystins in fish muscle tissue was 2 and 14 times higher, respectively, than the tolerable daily intake value. This survey presents the requirement for further monitoring of cyanotoxins, including masked microcystins, in aquaculture farming in these regions and beyond, along with the implementation of guidelines to safeguard human health. KW - Harmful algal bloom KW - UPLC-MS/MS KW - Bioaccumulation KW - Human health PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-404669 DO - https://doi.org/10.1007/s00216-017-0352-4 SN - 1618-2642 SN - 1618-2650 VL - 409 IS - 16 SP - 4057 EP - 4069 PB - Springer CY - Heidelberg AN - OPUS4-40466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böhmert, L. A1 - Girod, Matthias A1 - Hansen, Ulf A1 - Maul, Ronald A1 - Knappe, Patrick A1 - Niemann, B. A1 - Weidner, Steffen A1 - Thünemann, Andreas A1 - Lampen, A. T1 - Analytically monitored digestion of silver nanoparticles and their toxicity on human intestinal cells N2 - Orally ingested nanoparticles may overcome the gastrointestinal barrier, reach the circulatory system, be distributed in the organism and cause adverse health effects. However, ingested nanoparticles have to pass through different physicochemical environments, which may alter their properties before they reach the intestinal cells. In this study, silver nanoparticles are characterised physicochemically during the course of artificial digestion to simulate the biochemical processes occurring during digestion. Their cytotoxicity on intestinal cells was investigated using the Caco-2 cell model. Using field-flow fractionation combined with dynamic light scattering and small-angle X-ray scattering, the authors found that particles only partially aggregate as a result of the digestive process. Cell viabilities were determined by means of CellTiter-Blue® assay, 4',6-diamidino-2-phenylindole-staining and real-time impedance. These measurements reveal small differences between digested and undigested particles (1–100 µg/ml or 1–69 particles/cell). The findings suggest that silver nanoparticles may indeed overcome the gastrointestinal juices in their particulate form without forming large quantities of aggregates. Consequently, the authors presume that the particles can reach the intestinal epithelial cells after ingestion with only a slight reduction in their cytotoxic potential. The study indicates that it is important to determine the impact of body fluids on the nanoparticles of interest to provide a reliable interpretation of their nano-specific cytotoxicity testing in vivo and in vitro. KW - Silver nanoparticles KW - In vitro digestion KW - Field-flow fractionation KW - Small-angle X-ray scattering KW - Dynamic light scattering KW - Caco-2 cells PY - 2014 DO - https://doi.org/10.3109/17435390.2013.815284 SN - 1743-5390 SN - 1743-5404 VL - 8 IS - 6 SP - 631 EP - 642 PB - Informa Healthcare CY - London AN - OPUS4-29926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Esslinger, Susanne A1 - Becker, Roland A1 - Maul, Ronald A1 - Nehls, Irene T1 - Hexabromocyclododecane enantiomers: microsomal degradation and patterns of hydroxylated metabolites N2 - The degradation of the enantiomers of α-, β-, and γ-hexabromocyclododecane (HBCD) by phase I metabolism was investigated using induced rat liver microsomes. HBCD isomers were quantified using HPLC-MS/MS (ESI-) after separation on a combination of a reversed phase and a chiral analytical column. The degradation of all six isomers followed first-order kinetics and the estimated half-lives ranged from 6.3 min for both β-HBCD enantiomers to 32.3 min in case of (+)-γ-HBCD. (+)-α- and (–)-γ-HBCD displayed significantly shorter half-lives than their corresponding antipodes. It could be shown that this degradation led to a significant enrichment of the first eluting enantiomers (–)-α- and (+)-γ-HBCD. Individual patterns of mono- and dihydroxylated derivatives obtained from each α- and γ-HBCD enantiomer were seen to be distinctly characteristic. The patterns of monohydroxylated HBCD derivatives detected in liver and muscle tissues of pollack, mackerel and in herring gull eggs were largely similar to those observed in the in vitro experiments with rat liver microsomes. This enabled individual hydroxy-HBCDs to be assigned to their respective parent HBCD enantiomers. KW - Brominated flame retardant KW - Cytochromes KW - Phase I metabolism KW - Hydroxylation KW - HPLC-MS/MS PY - 2011 DO - https://doi.org/10.1021/es1039584 SN - 0013-936X SN - 1520-5851 VL - 45 IS - 9 SP - 3938 EP - 3944 PB - ACS Publ. CY - Washington, DC AN - OPUS4-23837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Esslinger, Susanne A1 - Becker, Roland A1 - Maul, Ronald A1 - Nehls, Irene T1 - Hexabromcyclododecan - Untersuchungen zum Phase I Metabolismus PY - 2010 SN - 0934-3504 SN - 1865-5084 VL - 22 IS - 4 SP - 364 PB - Springer CY - Heidelberg AN - OPUS4-22907 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maul, Ronald A1 - Dahmen-Levison, U. A1 - Koch, Matthias A1 - Panne, Ulrich T1 - Performance and Efficiency of Cleanup Columns for Selected Fusarium Mycotoxins and Conjugates T2 - ANAKON 2013 CY - Essen, Germany DA - 2013-03-04 PY - 2013 AN - OPUS4-27836 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -