TY - JOUR A1 - Mermillod-Blondin, A. A1 - Mauclair, C. A1 - Bonse, Jörn A1 - Stoian, R. A1 - Audouard, E. A1 - Rosenfeld, A. A1 - Hertel, I.V. T1 - Time-resolved imaging of laser-induced refractive index changes in transparent media N2 - We describe a method to visualize ultrafast laser-induced refractive index changes in transparent materials with a 310 fs impulse response and a submicrometer spatial resolution. The temporal profile of the laser excitation sequence can be arbitrarily set on the subpicosecond and picosecond time scales with a pulse shaping unit, allowing for complex laser excitation. Time-resolved phase contrast microscopy reveals the real part of the refractive index change and complementary time-resolved optical transmission microscopy measurements give access to the imaginary part of the refractive index in the irradiated region. A femtosecond laser source probes the complex refractive index changes from the excitation time up to 1 ns, and a frequency-doubled Nd:YAG laser emitting 1 ns duration pulses is employed for collecting data at longer time delays, when the evolution is slow. We demonstrate the performance of our setup by studying the energy relaxation in a fused silica sample after irradiation with a double pulse sequence. The excitation pulses are separated by 3 ps. Our results show two dimensional refractive index maps at different times from 200 fs to 100 µs after the laser excitation. On the subpicosecond time scale we have access to the spatial characteristics of the energy deposition into the sample. At longer times (800 ps), time-resolved phase contrast microscopy shows the appearance of a strong compression wave emitted from the excited region. On the microsecond time scale, we observe energy transfer outside the irradiated region. KW - High-speed optical techniques KW - Light transmission KW - Neodymium KW - Optical harmonic generation KW - Optical pulse shaping KW - Refractive index KW - Self-induced transparency KW - Silicon compounds KW - Solid lasers PY - 2011 UR - http://rsi.aip.org/resource/1/rsinak/v82/i3/p033703_s1 U6 - https://doi.org/10.1063/1.3527937 SN - 0034-6748 SN - 1089-7623 VL - 82 IS - 3 SP - 033703-1 EP - 033703-8 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-23308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mermillod-Blondin, A. A1 - Mauclair, C. A1 - Rosenfeld, A. A1 - Bonse, Jörn A1 - Stoian, R. A1 - Audouard, E. T1 - Time-resolved imaging of bulk a-SiO2 upon various ultrashort excitation sequences N2 - Ultrashort pulses lasers are tools of choice for functionalizing the bulk of transparent materials. In particular, direct photoinscription of simple photonic functions have been demonstrated. Those elementary functions rely on the local refractive index change induced when focusing an ultrashort pulse in the volume of a transparent material. The range of possibilities offered by direct photoinscription is still under investigation. To help understanding, optimizing and assessing the full potential of this method, we developed a time-resolved phase contrast microscopy setup. The imaginary part (absorption) and the real part of the laser-induced complex refractive index can be visualized in the irradiated region. The setup is based on a commercially available phase contrast microscope extended into a pump-probe scheme. The originality of our approach is that the illumination is performed by using a pulsed laser source (i.e. a probe beam). Speckle-related issues are solved by employing adequate sets of diffusers. This laser-microscopy technique has a spatial resolution of 650 nm, and the impulse response is about 300 fs. The laser-induced refractive index changes can be tracked up to milliseconds after the energy deposition. The excitation beam (the pump) is focused with a microscope objective (numerical aperture of 0.45) into the bulk of an a-SiO2 sample. The pump beam can be temporally shaped with a SLM-based pulse shaping unit. This additional degree of flexibility allows for observing different interaction regimes. For instance, bulk material processing with femtosecond and picosecond duration pulses will be studied. T2 - Photonics West 2011 CY - San Francisco, CA, USA DA - 22.01.2011 PY - 2011 U6 - https://doi.org/10.1117/12.876687 VL - 7925 IS - 79250R SP - 1 EP - 7 AN - OPUS4-23332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mauclair, C. A1 - Mermillod-Blondin, A. A1 - Mishchik, K. A1 - Bonse, Jörn A1 - Rosenfeld, A. A1 - Colombier, J. P. A1 - Stoian, R. T1 - Excitation and relaxation dynamics in ultrafast laser irradiated optical glasses N2 - We discuss the dynamics of ultrashort pulsed laser excitation in bulk optical silica-based glasses (fused silica and borosilicate BK7) well-above the permanent modification threshold. We indicate subsequent structural and thermomechanical energy relaxation paths that translate into positive and negative refractive index changes, compression and rarefaction zones. If fast electronic decay occurs at low excitation levels in fused silica via self-trapping of excitons, for carrier densities in the vicinity of the critical value at the incident wavelength, persistent long-living absorptive states indicate the achievement of low viscosity matter states manifesting pressure relaxation, rarefaction, void opening and compaction in the neighboring domains. An intermediate ps-long excited carrier dynamics is observed for BK7 in the range corresponding to structural expansion and rarefaction. The amount of excitation and the strength of the subsequent hydrodynamic evolution is critically dependent on the pulse time envelope, indicative of potential optimization schemes. KW - Ultrafast laser excitation KW - Refractive index engineering KW - Glasses KW - Carrier plasmas KW - Pulse shaping PY - 2016 U6 - https://doi.org/10.1017/hpl.2016.45 SN - 2095-4719 SN - 2052-3289 VL - 4 SP - e46, 1 EP - 8 PB - Cambridge University Press AN - OPUS4-38689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -