TY - JOUR A1 - Dette, Angelika A1 - Guadagnino, E. A1 - Matschat, Ralf A1 - Sundberg, P. T1 - Certification of the mass fractions of total and hexavalent chromium in glass: a joint collaborative work in co-operation with BAM and ICG KW - Glasreferenzmaterial KW - Hexavalentes Chrom KW - Verpackungsverordnung PY - 2004 SN - 0391-4259 IS - 1 SP - 5 EP - 14 PB - Aurora Pubbl. CY - Venezia AN - OPUS4-11868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emons, H. A1 - Marriott, J. A1 - Matschat, Ralf T1 - ERM - A new landmark for reference materials KW - Europäische Referenzmaterialien KW - Europäische Zusammenarbeit PY - 2005 U6 - https://doi.org/10.1007/s00216-004-2844-2 SN - 1618-2642 SN - 1618-2650 VL - 381 IS - 1 SP - 28 EP - 29 PB - Springer CY - Berlin AN - OPUS4-7300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gopala, Anil A1 - Kipphardt, Heinrich A1 - Matschat, Ralf A1 - Panne, Ulrich T1 - Use of mass spectrometric detection as a versatile process monitoring tool: reduction patterns in a milled ZnO/Al mixture N2 - Mass spectrometric detection can play a prominent role in the assessment of different reactions occurring at varied temperatures in a milled ZnO/Al mixture. This is the first time that online mass spectrometric information was used as a tool for monitoring and understanding the chemical reduction process mechanism. We have observed four different types of reaction taking place: (1) distillation of Zn metal, (2) reduction of ZnO by activated Al, (3) melting of Al and finally (4) reduction of ZnO by inactivated Al. The experimental conditions and results observed by QMS were supported with literature data and physical measurement data from X-Ray Diffraction (XRD) which gave us an idea about the complex reaction cascade which occurred during the formation of the zinc metal. PY - 2010 U6 - https://doi.org/10.1039/c0ay00057d SN - 1759-9660 SN - 1759-9679 VL - 2 SP - 451 EP - 454 PB - RSC Publ. CY - Cambridge AN - OPUS4-21291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gopala, Anil A1 - Kipphardt, Heinrich A1 - Matschat, Ralf A1 - Panne, Ulrich T1 - Mass spectrometry insight of the process mechanism during the vacuum distillation of zinc N2 - Detection and monitoring of volatile elements released during the preparation of ultra high purity zinc by vacuum distillation (VD) is reported using online quadrupole gas source mass spectrometry (QMS). The theoretically calculated vapour pressures (pv) for the volatile impurity elements using Dushman constants and the practically observed mass spectra were found to be consistent (S. Dushman and J. M. Lafferty, Scienific Foundations of Vacuum Technique, 2nd ed., Wiley, New York, 1962). This is the first time that the potential ability of an online mass spectrometer was used for monitoring and understanding the process mechanism during the purification of metals (Zn) using VD. We here also illustrate our findings with the results from high resolution glow discharge mass spectrometer (HR-GDMS) analysis before and after the purification of Zn. PY - 2009 U6 - https://doi.org/10.1039/b904133h SN - 0267-9477 SN - 1364-5544 VL - 24 SP - 887 EP - 890 PB - Royal Society of Chemistry CY - London AN - OPUS4-19595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gopala, Anil A1 - Kipphardt, Heinrich A1 - Matschat, Ralf A1 - Panne, Ulrich T1 - Process methodology for the small scale production of m6N5 purity zinc using a resistance heated vacuum distillation system N2 - Ultra high purity Zn (m6N5) was obtained through triple vacuum distillation using an m4N5 Zn as input material. High-volatile impurities were removed from the zinc matrix by vacuum evaporation, while traces having lower volatility than the matrix remained in the residual material after finishing of the entire purification process. The time required for the removal of the main high-volatile impurity (Cd) was monitored using a connected gas source mass spectrometer. During distillation the Zn vapor of the distillate was condensed on the cap of a glassy carbon crucible which was water cooled by a movable copper block. The temperatures were optimized for the removal of the volatiles and for the distillation process using vapor pressure data. High resolution glow discharge mass spectrometry was applied for the analysis and purity evaluation of the distilled and input zinc. The analysis confirmed the reduction of the metallic impurities from 43 mg kg-1 to 0.5 mg kg-1 (m6N5) after three consecutive vacuum distillations. An increase in the grain size and a decrease in the micro-hardness were observed for the purified Zn material. KW - Ultra high purity KW - Vacuum distillation KW - High resolution glow discharge mass KW - Spectrometry KW - Micro-hardness KW - Zinc KW - Purification PY - 2010 U6 - https://doi.org/10.1016/j.matchemphys.2010.02.080 SN - 0254-0584 VL - 122 IS - 1 SP - 151 EP - 155 PB - Elsevier CY - Amsterdam AN - OPUS4-21127 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Guadagnino, E. A1 - Matschat, Ralf A1 - Dette, Angelika A1 - Sundberg, P. T1 - Certification of the mass fractions of trace elements in glass to be used for multi-element determination by XRF: a joint collaborative work in cooperation between BAM and ICG KW - Glasreferenzmaterial KW - Röntgenfluoreszenzanalyse KW - Multielementspurenbestimmung PY - 2005 SN - 0391-4259 IS - 4 SP - 5 EP - 16 PB - Aurora Pubbl. CY - Venezia AN - OPUS4-11665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gusarova, Tamara A1 - Hodoroaba, Vasile-Dan A1 - Matschat, Ralf A1 - Kipphardt, Heinrich A1 - Panne, Ulrich T1 - Exploitation of the hollow cathode effect for sensitivity enhancement of Grimm-type DC glow discharge optical emission spectroscopy N2 - The hollow cathode (HC) effect was investigated in non-cooled 15 mm deep drilled flat metallic analytical samples that were easy to prepare. The deep cavity used ("complete HC" in contrast to "recessed HC" with 2-3 mm deep cavity) intensified the HC effect notably and therefore distinctly improved the detection power of the common GD-OES with planar cathodes. A signal enhancement of up to a factor of 150, not reported earlier, in comparison with flat conventional samples was achieved. A better separation of the analytical lines from spectral interferences was observed when the HC assembly was applied. Additionally, an effect of strongly enhanced intensities of atomic lines and somewhat decreased intensities of ionic lines was detected in the case of HC in comparison to usual planar cathodes. The investigations were carried out with samples of copper, steel and zinc matrices using both the same and individually optimised glow discharge (GD) electrical parameters. KW - Hollow cathode KW - Grimm type glow discharge KW - Emission spectroscopy KW - GD-OES KW - Sensitivity PY - 2009 U6 - https://doi.org/10.1039/b814977a SN - 0267-9477 SN - 1364-5544 VL - 24 SP - 680 EP - 684 PB - Royal Society of Chemistry CY - London AN - OPUS4-19600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gusarova, Tamara A1 - Hofmann, T. A1 - Kipphardt, Heinrich A1 - Venzago, C. A1 - Matschat, Ralf A1 - Panne, Ulrich T1 - Comparison of different calibration strategies for the analysis of zinc and other pure metals by using the GD-MS instruments VG 9000 and element GD N2 - Synthetic pressed metal powder standards doped with standard solutions were used for the calibration of both commercially available high resolution GD-MS instruments Element GD and VG 9000 for zinc matrix. Different quantification procedures (IBR, Standard RSF, matrix matched RSF from the calibration with CRMs and use of doped synthetic standards) are compared using zinc matrix as an example, whereas the calibration with doped pellets turned out to be the best quantification technique for high-purity materials. The applicability of the Standard RSF concept is scrutinised. In this context, RSF values for several Matrices (Co, Cu, Fe, In and Zn) are reported additionally. PY - 2010 U6 - https://doi.org/10.1039/b921649a SN - 0267-9477 SN - 1364-5544 VL - 25 SP - 314 EP - 321 PB - Royal Society of Chemistry CY - London AN - OPUS4-22376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gusarova, Tamara A1 - Methven, B. A1 - Kipphardt, Heinrich A1 - Sturgeon, R. A1 - Matschat, Ralf A1 - Panne, Ulrich T1 - Calibration of double focusing glow discharge mass spectrometry instruments with pin-shaped synthetic standards N2 - Calibration of two commercially available glow discharge double focusing mass spectrometers, the VG 9000 and Element GD, is described using synthetic pin standards pressed from solution doped copper and zinc matrices. A special pressing die was developed for this purpose and optimal results were obtained with the highest possible pressures, i.e., 95 kN·cm- 2. This calibration approach permits the determination of trace element mass fractions down to µg·kg- 1 with small uncertainties and additionally provides traceability of the GD-MS results in the most direct manner to the SI (International System of Units). Results were validated by concurrent measurements of a number of compact copper and zinc certified reference materials. The impact of the sample pin cross-section (circular or square) was investigated with the use of a new pin-sample holder system for the Element GD. The pin-sample holder was designed by the manufacturer for pin-samples having circular cross-section; however, samples with square pin cross-section were also shown to provide acceptable results. Relative Sensitivity Factors for some 50 analytes in copper (VG 9000, Element GD) and zinc matrices (VG 9000) are presented. The field of applicability of GD-MS may be considerably extended via analysis of pin geometry samples based on their ease of preparation, especially with respect to the accuracy and traceability of the results and the enhanced number of analytes which can be reliably calibrated using such samples. KW - Glow discharge KW - Pin sample KW - Calibration PY - 2011 U6 - https://doi.org/10.1016/j.sab.2011.12.001 SN - 0584-8547 SN - 0038-6987 VL - 66 IS - 11-12 SP - 847 EP - 854 PB - Elsevier CY - Amsterdam AN - OPUS4-25346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Görner, Wolf A1 - Eichelbaum, Maik A1 - Matschat, Ralf A1 - Rademann, K. A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich T1 - Non-destructive investigation of composition, chemical properties and structure of materials by synchrotron radiation PY - 2006 SN - 0007-1137 VL - 48 IS - 9 SP - 540 EP - 544 PB - British Institute of Non-Destructive Testing CY - Northampton AN - OPUS4-14186 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -