TY - JOUR A1 - Mantion, Alexandre A1 - Graf, P. A1 - Florea, I. A1 - Haase, A. A1 - Thünemann, Andreas A1 - Masic, A. A1 - Ersen, O. A1 - Rabu, P. A1 - Meier, W. A1 - Luch, A. A1 - Taubert, A. T1 - Biomimetic synthesis of chiral erbium-doped silver/peptide/silica core-shell nanoparticles (ESPN) N2 - Peptide-modified silver nanoparticles have been coated with an erbium-doped silica layer using a method inspired by silica biomineralization. Electron microscopy and small-angle X-ray scattering confirm the presence of an Ag/peptide core and silica shell. The erbium is present as small Er2O3 particles in and on the silica shell. Raman, IR, UV-Vis, and circular dichroism spectroscopies show that the peptide is still present after shell formation and the nanoparticles conserve a chiral plasmon resonance. Magnetic measurements find a paramagnetic behavior. In vitro tests using a macrophage cell line model show that the resulting multicomponent nanoparticles have a low toxicity for macrophages, even on partial dissolution of the silica shell. KW - Nanoparticle KW - Small-angle X-ray scattering KW - SAXS PY - 2011 U6 - https://doi.org/10.1039/c1nr10930h SN - 2040-3364 SN - 2040-3372 VL - 3 IS - 12 SP - 5168 EP - 5179 PB - RSC Publ. CY - Cambridge AN - OPUS4-25422 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Masic, A. A1 - Chierotti, M.R. A1 - Gobetto, R. A1 - Martra, G. A1 - Rabin, Ira A1 - Coluccia, S. T1 - Solid state and unilateral NMR study of deterioration of a Dead Sea scroll fragment N2 - Unilateral and solid-state nuclear magnetic resonance (NMR) analyses were performed on a parchment fragment of the Dead Sea Scroll (DSS). The analyzed sample belongs to the collection of non-inscribed and nontreated fragments of known archaeological provenance from the John Rylands University Library in Manchester. Therefore, it can be considered as original DSS material free from any contamination related to the post-discovery period. Considering the paramount significance of the DSS, noninvasive approaches and portable in situ nondestructive methods are of fundamental importance for the determination of composition, structure, and chemical–physical properties of the materials under study. NMR studies reveal low amounts of water content associated with very short proton relaxation times, T1, indicating a high level of deterioration of collagen molecules within scroll fragments. In addition, 13C cross-polarization magicangle- spinning (CPMAS) NMR spectroscopy shows characteristic peaks of lipids whose presence we attribute to the production technology that did not involve liming. Extraction with chloroform led to the reduction of both lipid and protein signals in the 13C CPMAS spectrum indicating probable involvement of lipids in parchment degradation processes. NMR absorption and relaxation measurements provide nondestructive, discriminative, and sensitive tools for studying the deterioration effects on the organization and properties of water and collagen within ancient manuscripts. KW - Dead Sea scrolls KW - Collagen deterioration KW - Solid-state NMR KW - Unilateral NMR PY - 2012 U6 - https://doi.org/10.1007/s00216-011-5265-z SN - 1618-2642 SN - 1618-2650 VL - 402 IS - 4 SP - 1551 EP - 1557 PB - Springer CY - Berlin AN - OPUS4-25507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Graf, P. A1 - Mantion, Alexandre A1 - Haase, A. A1 - Thünemann, Andreas A1 - Masic, A. A1 - Luch, A. A1 - Taubert, A. T1 - Silicification of peptide-coated chiral nanosilver: Novel core-shell structures N2 - Nanosilver is increasingly used in optics, medicine and analytical chemistry. We recently reported on the synthesis and properties of novel peptide-coated chiral nanosilver [1] using a small hexapeptide based on the amino acids CKK. In a continuation of our previous work, we use the peptides to catalyse TEOS hydrolysis in order to form a dense silica layer shell around a single nanoparticle, preventing chemical etching, allowing their inclusion in other inorganics, and making them biocompatible. Because of mild reaction conditions, the peptide integrity is ensured, as the chiral information which is contained in the nanoparticle. Moreover, these novel core-shell structures remain well-dispersed and are biocompatible. The possibility of further processing (creation of metamaterials etc.) is also in the focus of our interest. KW - Hybrid materials KW - Nanosilver KW - Core shell PY - 2010 U6 - https://doi.org/10.1002/zaac.201009133 SN - 0044-2313 SN - 1521-3749 SN - 0372-7874 SN - 0863-1786 SN - 0863-1778 VL - 636 IS - 11 SP - 2115 PB - Wiley-VCH CY - Weinheim AN - OPUS4-22409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Rabin, Ira A1 - Hahn, Oliver A1 - Wolff, Timo A1 - Kindzorra, Emanuel A1 - Masic, A. A1 - Schade, U. A1 - Weinberg, G. ED - Dik, J. ED - Gunneweg, J. ED - Adriaens, A. T1 - Characterization of the writing media of the Dead Sea scrolls KW - Dead Sea scrolls KW - Parchment KW - Carbon ink KW - XRF KW - FTIR KW - SEM PY - 2010 SN - 978 90 04 18152 6 SN - 0169-9962 IS - Chapter 9 SP - 123 EP - 134 PB - Brill CY - Leiden, The Netherlands AN - OPUS4-21238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Graf, P. A1 - Mantion, Alexandre A1 - Haase, A. A1 - Thünemann, Andreas A1 - Masic, A. A1 - Meier, W. A1 - Luch, A. A1 - Taubert, A. T1 - Silicification of peptide-coated silver nanoparticles - a biomimetic soft chemistry approach toward chiral hybrid core-shell materials N2 - Silica and silver nanoparticles are relevant materials for new applications in optics, medicine, and analytical chemistry. We have previously reported the synthesis of pH responsive, peptide-templated, chiral silver nanoparticles. The current report shows that peptide-stabilized nanoparticles can easily be coated with a silica shell by exploiting the ability of the peptide coating to hydrolyze silica precursors such as TEOS or TMOS. The resulting silica layer protects the nanoparticles from chemical etching, allows their inclusion in other materials, and renders them biocompatible. Using electron and atomic force microscopy, we show that the silica shell thickness and the particle aggregation can be controlled simply by the reaction time. Small-angle X ray scattering confirms the Ag/peptide@silica core–shell structure. UV–vis and circular dichroism spectroscopy prove the conservation of the silver nanoparticle chirality upon silicification. Biological tests show that the biocompatibility in simple bacterial systems is significantly improved once a silica layer is deposited on the silver particles. KW - Peptide-templated materials KW - Silver nanoparticles KW - Chiral nanoparticles KW - Ag/peptide@SiO2 nanostructures KW - Core-shell structures PY - 2011 U6 - https://doi.org/10.1021/nn102969p SN - 1936-0851 VL - 5 IS - 2 SP - 820 EP - 833 PB - ACS Publ. CY - Washington, DC, USA AN - OPUS4-23207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schlaad, H. A1 - You, L. A1 - Sigel, R. A1 - Smarsly, B. A1 - Heydenreich, M. A1 - Mantion, Alexandre A1 - Masic, A. T1 - Glycopolymer vesicles with an asymmetric membrane KW - Glycopolymer vesicle PY - 2009 U6 - https://doi.org/10.1039/b820887e SN - 0022-4936 SN - 0009-241x SN - 1359-7345 SN - 1364-548x SP - 1478 EP - 1480 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-19581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haase, A. A1 - Tentschert, J. A1 - Jungnickel, H. A1 - Graf, P. A1 - Mantion, Alexandre A1 - Draude, F. A1 - Plendl, J. A1 - Goetz, M.E. A1 - Galla, S. A1 - Masic, A. A1 - Thünemann, Andreas A1 - Taubert, A. A1 - Arlinghaus, H. F. A1 - Luch, A. T1 - Toxicity of silver nanoparticles in human macrophages: uptake, intracellular distribution and cellular responses N2 - Silver nanoparticles (SNP) are among the most commercialized nanoparticles worldwide. They can be found in many diverse products, mostly because of their antibacterial properties. Despite its widespread use only little data on possible adverse health effects exist. It is difficult to compare biological data from different studies due to the great variety in sizes, coatings or shapes of the particles. Here, we applied a novel synthesis approach to obtain SNP, which are covalently stabilized by a small peptide. This enables a tight control of both size and shape. We applied these SNP in two different sizes of 20 or 40 nm (Ag20Pep and Ag40Pep) and analyzed responses of THP-1-derived human macrophages. Similar gold nanoparticles with the same coating (Au20Pep) were used for comparison and found to be non-toxic. We assessed the cytotoxicity of particles and confirmed their cellular uptake via transmission electron microscopy and confocal Raman microscopy. Importantly a majority of the SNP could be detected as individual particles spread throughout the cells. Furthermore we studied several types of oxidative stress related responses such as induction of heme oxygenase I or formation of protein carbonyls. In summary, our data demonstrate that even low doses of SNP exerted adverse effects in human macrophages. KW - Silver nanoparticles KW - Neurotoxicology KW - Protein carbonyls KW - ROS PY - 2011 U6 - https://doi.org/10.1088/1742-6596/304/1/012030 SN - 1742-6588 SN - 1742-6596 VL - 304 SP - 012030-1 - 012030-14 PB - IOP Publ. CY - Bristol, UK AN - OPUS4-24035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabin, Ira A1 - Hahn, Oliver A1 - Wolff, Timo A1 - Masic, A. A1 - Weinberg, G. T1 - On the origin of the ink of the thanksgiving scroll (1QHodayot) N2 - In this study we demonstrate the possibility to identify the production area of the scrolls, coupling non-destructive quantitative analysis of race elements to spectroscopic investigation of the inks. This approach, that allowed us to determine the Dead Sea area as origin of 1QHodayot, is of general validity. KW - 1QHodayot KW - Archaeometry KW - Material research KW - Carbon ink PY - 2009 U6 - https://doi.org/10.1163/156851709X395722 SN - 0929-0761 SN - 1568-5179 VL - 16 IS - 1 SP - 97 EP - 106 PB - Brill CY - Leiden AN - OPUS4-23330 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haase, A. A1 - Arlinghaus, H. F. A1 - Tentschert, J. A1 - Jungnickel, H. A1 - Graf, P. A1 - Mantion, Alexandre A1 - Draude, F. A1 - Galla, S. A1 - Plendl, J. A1 - Goetz, M.E. A1 - Masic, A. A1 - Meier, W. A1 - Thünemann, Andreas A1 - Taubert, A. A1 - Luch, A. T1 - Application of laser postionization secondary neutral mass spectrometry / time-of-flight secondary ion mass spectrometry in nanotoxicology: Visualization of nanosilver in human macrophages and cellular responses N2 - Silver nanoparticles (SNP) are the subject of worldwide commercialization because of their antimicrobial effects. Yet only little data on their mode of action exist. Further, only few techniques allow for visualization and quantification of unlabeled nanoparticles inside cells. To study SNP of different sizes and coatings within human macrophages, we introduce a novel laser postionization secondary neutral mass spectrometry (Laser-SNMS) approach and prove this method superior to the widely applied confocal Raman and transmission electron microscopy. With time-of-flight secondary ion mass spectrometry (TOF-SIMS) we further demonstrate characteristic fingerprints in the lipid pattern of the cellular membrane indicative of oxidative stress and membrane fluidity changes. Increases of protein carbonyl and heme oxygenase-1 levels in treated cells confirm the presence of oxidative stress biochemically. Intriguingly, affected phagocytosis reveals as highly sensitive end point of SNP-mediated adversity in macrophages. The cellular responses monitored are hierarchically linked, but follow individual kinetics and are partially reversible. KW - Nanosilver KW - Laser-SNMS KW - TOF-SIMS KW - Confocal Raman microscopy KW - Oxidative stress KW - Protein carbonyls PY - 2011 U6 - https://doi.org/10.1021/nn200163w SN - 1936-0851 VL - 5 IS - 4 SP - 3059 EP - 3068 PB - ACS Publ. CY - Washington, DC, USA AN - OPUS4-23656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Graf, P. A1 - Mantion, Alexandre A1 - Foelske, A. A1 - Shkilnyy, A. A1 - Masic, A. A1 - Thünemann, Andreas A1 - Taubert, A. T1 - Peptide-coated silver nanoparticles: Synthesis, surface chemistry, and pH-triggered, reversible assembly into particle assemblies N2 - Simple tripeptides are scaffolds for the synthesis and further assembly of peptide/silver nanoparticle composites. Herein, we further explore peptide-controlled silver nanoparticle assembly processes. Silver nanoparticles with a pH-responsive peptide coating have been synthesized by using a one-step precipitation/coating route. The nature of the peptide/silver interaction and the effect of the peptide on the formation of the silver particles have been studied via UV/Vis, X-ray photoelectron, and surface-enhanced Raman spectroscopies as well as through electron microscopy, small angle X-ray scattering and powder X-ray diffraction with Rietveld refinement. The particles reversibly form aggregates of different sizes in aqueous solution. The state of aggregation can be controlled by the solution pH value. At low pH values, individual particles are present. At neutral pH values, small clusters form and at high pH values, large precipitates are observed. KW - Hybrid materials KW - Nano-particles KW - Oligopeptides KW - pH KW - Silver PY - 2009 U6 - https://doi.org/10.1002/chem.200802329 SN - 0947-6539 SN - 1521-3765 VL - 15 IS - 23 SP - 5831 EP - 5844 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-19514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schütz, Roman A1 - Bertinetti, L. A1 - Rabin, Ira A1 - Fratzl, P. A1 - Masic, A. T1 - Quantifying degradation of collagen in ancient manuscripts: the case of the Dead Sea Temple Scroll N2 - Since their discovery in the late 1940s, the Dead Sea Scrolls, some 900 ancient Jewish texts, have never stopped attracting the attention of scholars and the broad public alike, because they were created towards the end of the Second Temple period and the 'time of Christ'. Most of the work on them has been dedicated to the information contained in the scrolls' text, leaving physical aspects of the writing materials unexamined. They are, however, crucial for both historical insight and preservation of the scrolls. Although scientific analysis requires handling, it is essential to establish the state of degradation of these valued documents. Polarized Raman Spectroscopy (PRS) is a powerful tool for obtaining information on both the composition and the level of disorder of molecular units. In this study, we developed a non-invasive and non-destructive methodology that allows a quantification of the disorder (that can be related to the degradation) of protein molecular units in collagen fibers. Not restricted to collagen, this method can be applied also to other protein-based fibrous materials such as ancient silk, wool or hair. We used PRS to quantify the degradation of the collagen fibers in a number of fragments of the Temple Scroll (11Q19a). We found that collagen fibers degrade heterogeneously, with the ones on the surface more degraded than those in the core. KW - Dead Sea Scrolls KW - Collagen KW - Raman spectroscopy PY - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-331769 SN - 0003-2654 SN - 1364-5528 VL - 138 IS - 19 SP - 5594 EP - 5599 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-33176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schütz, R. A1 - Maragh, J. A1 - Weaver, J. A1 - Rabin, Ira A1 - Masic, A. T1 - The Temple Scroll: Reconstructing an ancient manufacturing practice N2 - The miraculously preserved 2000-year-old Dead Sea Scrolls, ancient texts of invaluable historical significance, were discovered in the mid-20th century in the caves of the Judean desert. The texts were mainly written on parchment and exhibit vast diversity in their states of preservation. One particular scroll, the 8-m-long Temple Scroll is especially notable because of its exceptional thinness and bright ivory color. The parchment has a layered structure, consisting of a collagenous base material and an atypical inorganic overlayer. We analyzed the chemistry of the inorganic layer using x-ray and Raman spectroscopies and discovered a variety of evaporitic sulfate salts. This points toward a unique ancient production technology in which the parchment was modified through the addition of the inorganic layer as a writing surface. Furthermore, understanding the properties of these minerals is particularly critical for the development of suitable conservation methods for the preservation of these invaluable historical documents. KW - Temple Scroll KW - Dead Sea Scrolls PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-495314 VL - 5 IS - 9 SP - 1 EP - 9 PB - AAAS AN - OPUS4-49531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -