TY - JOUR A1 - Pellegrino, F. A1 - Sordello, F. A1 - Mino, L. A1 - Minero, C. A1 - Hodoroaba, Vasile-Dan A1 - Martra, G. A1 - Maurino, V. T1 - Formic acid photoreforming for hydrogen production on shape-controlled anatase TiO2 nanoparticles: Assessment of the role of fluorides, {101}/{001} surfaces ratio, and platinization N2 - Hydrogen production via formate photoreforming on TiO2 is characterized by marked dependence on the ratio between {101} and {001} surfaces for anatase nanoparticles. We observed higher rates of hydrogen Evolution with the increase of the {101} facets presence, owing to their reductive nature. This helps the Pt photodeposition in the early stages of Irradiation and, then, the hydrogen ion reduction reaction. The selective photodeposition of 2 nm Pt nanoparticles on {101} facets was confirmed by transmission electron microscopy (TEM) micrographs. The results are confirmed also by experiments carried out without the use of Pt as cocatalyst and by photoelectrochemical measurements. The work also explains the marginal effect of the fluorination on the H2 evolution. KW - Titanium dioxide KW - Fluoride KW - Platinum KW - Nanoparticles KW - Controlled-shape KW - Hydrogen photoproduction KW - Surface PY - 2019 UR - https://pubs.acs.org/doi/10.1021/acscatal.9b01861 U6 - https://doi.org/10.1021/acscatal.9b01861 SN - 2155-5435 VL - 9 IS - 8 SP - 6692 EP - 6697 PB - ACS Publications AN - OPUS4-48355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -