TY - JOUR A1 - Schäfer, N. A1 - Wilkinson, A. J. A1 - Schmid, Thomas A1 - Winkelmann, Aimo A1 - Chahine, G. A. A1 - Schülli, T. U. A1 - Rissom, T. A1 - Marquardt, J. A1 - Schorr, S. A1 - Abou-Ras, D. T1 - Microstrain distribution mapping on CuInSe2 thin films by means of electron backscatter diffraction, X-ray diffraction, and Raman microspectroscopy N2 - The investigation of the microstructure in functional, polycrystalline thin films is an important contribution to the enhanced understanding of structure–property relationships in corresponding devices. Linear and planar defects within individual grains may affect substantially the performance of the device. These defects are closely related to strain distributions. The present work compares electron and X-ray diffraction as well as Raman microspectroscopy, which provide access to microstrain distributions within individual grains. CuInSe₂ thin films or solar cells are used as a modelsystem. High-resolution electron backscatter diffraction and X-ray microdiffraction as well as Ramanmicrospectroscopy were applied for this comparison. Consistently, microstrain values were determined of the order of 10⁻⁴ by these three techniques. However,only electron backscatter diffraction, X-ray microdiffraction exhibit sensitivities appropriate for mapping local strain changes at the submicrometer level within individual grains in polycrystalline materials. KW - Microstrain KW - Thin film KW - X-ray microdiffraction KW - EBSD KW - Raman microspectroscopy PY - 2016 U6 - https://doi.org/10.1016/j.ultramic.2016.07.001 SN - 0304-3991 SN - 1879-2723 VL - 169 SP - 89 EP - 97 PB - Elsevier B.V. AN - OPUS4-37453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marquardt, J. A1 - Gurieva, G. A1 - Stephan-Scherb, Christiane A1 - Schorr, S. T1 - The Effect of Copper Vacancies on the Anion Position of Chalcopyrite Type CuGaS2 N2 - The prediction of structural parameters and optoelectronic properties of compound semiconductors is very important. However, calculations often neglect chemical variability and structural defects. In chalcopyrite type semiconductors one of the major defects are copper vacancies (V Cu). The four cation neighbors of the anion determine its position in the chalcopyrite type structure expressed by the Wyckoff position 8d (x, 1/4, 1/8). Intrinsic point defects like V Cu and anti-sites may cause variations of the Anion position in the middle of the cation tetrahedron, especially in the Anion position Parameter x. For stoichiometric chalcopyrite type compounds a formalism according to the principle of conservation of tetrahedral bonds (CTB) can be applied to calculate the anion position parameter, but it fails in the case of off-stoichiometric chalcopyrites. This case study of chalcopyrite type CuGaS 2 and Mn-substituted GuGaS 2 shows that the experimentally determined anion position Parameter x deviate from values calculated by CTB approach. The systematic investigation of off-stoichiometric CuGaS 2 and Mn-substituted GuGaS 2 demonstrates the effect of copper vacancies on the average radii of the cation sites (Wyckoff positions 4a and 4b) as well as on the anion position Parameter x. By applying an elaborated CTB Approach implementing copper vacancies an agreement between experimental and calculated anion position Parameter x can be obtained. KW - Chalcogenides KW - Neutron diffraction KW - Copper vacancies PY - 2019 U6 - https://doi.org/10.1002/pssa.201800882 VL - 216 IS - 15 SP - 1800882 PB - Wiley AN - OPUS4-47748 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -