TY - JOUR A1 - Tissot, I. A1 - Troalen, L.G. A1 - Manso, M. A1 - Ponting, M. A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Barreiros, M. A. A1 - Shaw, I. A1 - Carvalho, M.L. A1 - Guerra, M.F. T1 - A multi-analytical approach to gold in Ancient Egypt: Studies on provenance and corrosion N2 - Recent results from a three-year multi-disciplinary project on Ancient Egyptian gold jewellery revealed that items of jewellery from the Middle Kingdom to the New Kingdom were manufactured using a variety of alluvial gold alloys. These alloys cover a wide range of colours and the majority contain Platinum Group Elements inclusions. However, in all the gold foils analysed, these inclusions were found to be absent. In this work a selection of gilded wood and leather items and gold foil fragments, all from the excavations by John Garstang at Abydos (primarily from Middle Kingdom graves), were examined using Scanning Electron Microscopy-Energy Disperse Spectroscopy (SEM-EDS), X-Ray Fluorescence (µXRF), Particle Induced X-Ray Emission (µPIXE) and Double Dispersive X-Ray Fluorescence (D²XRF). The work allowed us to characterise the composition of the base-alloys and also to reveal the presence of Pt at trace levels, confirming the use of alluvial gold deposits. Corrosion products were also investigated in the foils where surface tarnish was visually observed. Results showed that the differences in the colour of corrosion observed for the foils are related not only to the thickness of the corrosion layer but also to a multi-layer structure containing the various corrosion products. KW - Gold KW - Egypt KW - PGE KW - Provenance KW - Corrosion KW - muXRF KW - muPIXE KW - D2XRF KW - SEM-EDS PY - 2015 U6 - https://doi.org/10.1016/j.sab.2015.03.012 SN - 0584-8547 SN - 0038-6987 VL - 108 SP - 75 EP - 82 PB - Elsevier CY - Amsterdam AN - OPUS4-33155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manso, M. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Pessanha, S. A1 - Guerra, M. A1 - Carvalho, M.L. A1 - Reinholz, Uwe A1 - Radtke, Martin T1 - Assessment of heavy metals and hazardous substances in tattoo inks N2 - Tattooing practice is adopted worldwide and represents a socio-cultural phenomenon, but the injection into the skin of coloring agents, such as metals might pose a serious health problem. Tattoo ink compounds are in general not officially controlled. Moreover, the origins as well as the chemical and toxicological specifications of these coloring agents are hardly known by the producers, the tattooists and by the consumers. In this view, the aim of this study was to characterize the metal composition of tattoo inks available in the market and to draw attention to the associated risk for human health. A set of tattoo inks from the brand Kuro Sumi was analyzed by means of Synchrotron-based X-ray Fluorescence spectrometry (Sy-XRF) at BAMline @ BESSY II and Raman Spectroscopy using the XploRA confocal Raman microscope (785 nm laser) at the LIBPhys-UNL. Carbon black, rutile, phtalo blue, phtalo green, helizarin red, helizarin yellow and dioxazine violet were respectively identified in black, white, blue, green, red, yellow and violet inks. However, a wide range of transition and heavy metals, potentially hazardous was revealed by Sy-XRF. A semi-quantitative evaluation has revealed, in some inks, amounts of Cr, Cu, Zn and Pb higher than the allowed according to the resolution adopted by the Council of Europe on the safety of tattoos and permanent make-up. T2 - European Conference on X-Ray Spectrometry (EXRS) CY - Gothenburg, Schweden DA - 19.06.2016 KW - Synchrotron KW - XRF KW - Tattoo PY - 2016 AN - OPUS4-38804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manso, M. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Pessanha, S. A1 - Guerra, M. A1 - Carvalho, M.L. A1 - Reinholz, Uwe A1 - Radtke, Martin T1 - Toxic metals in tattoo inks N2 - Tattooing practice is adopted worldwide and represents a socio-cultural phenomenon, but the injection into the skin of coloring agents, such as metals might pose a serious health problem. Tattoo ink compounds are in general not officially controlled. Moreover, the origins as well as the chemical and toxicological specifications of these coloring agents are hardly known by the producers, the tattooists and by the consumers. In this view, the aim of this study was to characterize the metal composition of tattoo inks available in the market and to draw attention to the associated risk for human health. A set of tattoo inks from the brand Kuro Sumi was analyzed by means of Synchrotron-based X-ray Fluorescence spectrometry (Sy-XRF) at BAMline @ BESSY II and Raman Spectroscopy using the XploRA confocal Raman microscope (785 nm laser). Carbon black, rutile, phtalo blue, phtalo green, helizarin red, helizarin yellow and dioxazine violet were respectively identified in black, white, blue, green, red, yellow and violet inks. However, a wide range of transition and heavy metals, potentially hazardous was revealed by Sy-XRF. A semi-quantitative evaluation has revealed, in some inks, amounts of Cr, Cu, Zn and Pb higher than the allowed according to the resolution adopted by the Council of Europe on the safety of tattoos and permanent make-up (PMU. T2 - Heavy Metals: from the Environment to the Man CY - Lissabon, Portugal DA - 21.03.2016 KW - Synchrotron KW - BAMline KW - XRF KW - Tattoo PY - 2016 AN - OPUS4-38806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manso, M. A1 - Pessanha, S. A1 - Guerra, M. A1 - Reinholz, Uwe A1 - Afonso, C. A1 - Radtke, Martin A1 - Lourenco, H. A1 - Carvalho, M. L. A1 - de Oliveira Guilherme Buzanich, Ana T1 - Assessment of Toxic Metals and Hazardous Substances in Tattoo Inks Using Sy-XRF, AAS, and Raman Spectroscopy N2 - Synchrotron radiation X-ray fluorescence spectroscopy, in conjunction with atomic absorption and Raman spectroscopy, was used to analyze a set of top brand tattoo inks to investigate the presence of toxic elements and hazardous substances. The Cr, Cu, and Pb contents were found to be above the maximum allowed levels established by the Council of Europe through the resolution ResAP(2008)1 on requirements and criteria for the safety of tattoos and permanent makeup. Raman analysis has revealed the presence of a set of prohibited substances mentioned in ResAP(2008)1, among which are the pigments Blue 15, Green 7, and Violet 23. Other pigments that were identified in white, black, red, and yellow inks are the Pigment White 6, Carbon Black, Pigment Red 8, and a diazo yellow, respectively. The present results show the importance of regulating tattoo ink composition. KW - Synchrotron KW - Tattoo inks KW - XRF KW - Toxic metals KW - Hazardous substances PY - 2019 U6 - https://doi.org/10.1007/s12011-018-1406-y VL - 187 IS - 2 SP - 596 EP - 601 PB - Springer AN - OPUS4-47369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -