TY - GEN A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Schiller, J.H. A1 - Wiggerich, B. A1 - Manolov, Manol T1 - Micro-drone for the characterization and self-optimizing search of hazardous gaseous substance sources: A new approach to determine wind speed and direction N2 - BAM Federal Institute for Materials Research and Testing, in cooperation with the AirRobot GmbH & Co. KG company, has developed a flying remote-controlled measuring system. The system is capable of operating in a variety of scenarios of gas emissions, e.g. exhaust gas from chimneys, flue gas in a fire, gas emissions in the case of an accident of chemical or hazardous goods or in the case of a terrorist act involving toxic gases. Thus it can measure the gas concentration in the immediate vicinity of the object which causes the emission. A further stage of extension is to enhance the system for plume tracking and identification of sources of hazardous gases. T2 - ROSE 2010 - IEEE International workshop on robotic and sensors environments CY - Phoenix, Arizona, USA DA - 2010-10-15 KW - Autonomous robot KW - UAV KW - Quadrocopter KW - Mobile sensing system KW - Chemical sensing KW - Gas sensors KW - Chemical source localization KW - Plume tracking KW - Anemometric sensor KW - Wind speed and direction PY - 2010 SN - 978-1-4244-7146-1 U6 - https://doi.org/10.1109/ROSE.2010.5675265 IS - Session 1 - Intelligent Sensing SP - 1 EP - 6 AN - OPUS4-22189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -