TY - CHAP A1 - Eberstein, Markus A1 - Zoheidi, M. A1 - Vogel, Jens A1 - Mann, Guido A1 - Krüger, Jörg ED - Wolf, Jonas C. ED - Luka Lange, T1 - Influence of fictive temperature on laser-induced damage of silica glass KW - Silica glass KW - Fictive temperature KW - Multimode fiber KW - Nanosecond laser KW - Damage threshold PY - 2008 SN - 978-1-60456-578-2 IS - Chapter 10 SP - 275 EP - 286 PB - Nova Science Publishers, Inc. CY - New York, USA AN - OPUS4-17903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eberstein, Markus A1 - Mann, Guido A1 - Vogel, Jens A1 - Zoheidi, M. A1 - Krüger, Jörg T1 - Influence of Technological Parameters on Nanosecond Laser-induced Surface Damage of Optical Multimode Fibers N2 - High-power optical multimode fibers are essential components for materials processing and surgery and can limit the reliability of expensive systems due to breakdown at the end faces. The breakdown threshold of fibers is determined by intrinsic materials properties and parameters of the technology applied. The aim of this paper is the identification of technological parameters that are crucial for the fiber quality. Fibers were drawn from preforms of Heraeus SWU with core material F300 and a low amount of OH-. Both, the cladding (fluorine doped SiO2) to core diameter ratio (CCDR) and the drawing speed were varied. CCDR values between 1.05 and 1.4 were used. Afterwards, the laser-induced damage thresholds (LIDT) of the fibers were determined. For comparison, also samples from preforms, which underwent different thermal treatments above the transition temperature, were tested with respect to their damage resistivity. Single and multi pulse LIDT measurements were done in accordance with the relevant ISO standards. Nd:YAG laser pulses with durations of 15 ns (1064 nm wavelength) and 8.5 ns (532 nm) at a repetition rate of 10 Hz were utilized. For the fibers, LIDT values (1-on-1, 1064 nm and 532 nm) increased with growing CCDR and with decreasing drawing velocities. KW - Silica glass KW - Multimode fiber KW - Nanosecond laser KW - Damage threshold PY - 2005 SN - 1022-6680 SN - 1662-8985 VL - 39-40 SP - 225 EP - 230 PB - Trans Tech Publ. CY - Zurich AN - OPUS4-17339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -