TY - JOUR A1 - Markötter, H. A1 - Manke, I. A1 - Kuhn, R. A1 - Arlt, Tobias A1 - Kardjilov, N. A1 - Hentschel, Manfred P. A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Hartnig, C. A1 - Scholta, J. A1 - Banhart, J. T1 - Neutron tomographic investigations of water distributions in polymer electrolyte membrane fuel cell stacks N2 - Neutron tomography was applied to study the 3D water distribution in full polymer electrolyte membrane fuel cell (PEMFC) stacks. The water distribution after switch-off of the fuel cell was analyzed over a period of 36 h. We found a slowly increasing water amount in the fuel cell, but only few changes within a time period of 5 h, which is about the time necessary for neutron tomography. In this way, the requirement for successful tomography was obtained. It is demonstrated how the quasi in-situ tomography technique enables us to study the water content in individual flow field channels of three-fold stacks. Flow field as well as stack design issues are addressed by this visualization method showing weak points due to a non-uniform water distribution that can be identified by means of neutron imaging. KW - Radiography KW - Tomography KW - Neutron imaging KW - Polymer electrolyte membrane fuel cell (PEMFC) KW - Manifold stack KW - Water management PY - 2012 U6 - https://doi.org/10.1016/j.jpowsour.2012.07.043 SN - 0378-7753 VL - 219 SP - 120 EP - 125 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-26317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markötter, H. A1 - Manke, I. A1 - Krüger, P. A1 - Arlt, Tobias A1 - Huassmann, J. A1 - Klages, M. A1 - Riesemeier, Heinrich A1 - Hartnig, C. A1 - Scholta, J. A1 - Banhart, J. T1 - Investigation of 3D water transport paths in gas diffusion layers by combined in-situ synchrotron X-ray radiography and tomography N2 - The three-dimensional water distribution and water transport paths in the gas diffusion layer (GDL) and the adjacent micro-porous layer (MPL) of a polymer electrolyte membrane fuel cell (PEMFC) were analyzed during cell operation. The technique of quasi in-situ X-ray tomography was used for a 3D visualization of the water distribution and the structure of the GDL at different operating conditions. Based on findings from in-situ radiographic measurements water transport paths were detected and subsequently examined by tomography. The combination of these 2D and 3D techniques allows for a fully three-dimensionally resolved visualization of transport paths through the GDL. KW - Polymer electrolyte membrane fuel cell (PEMFC) KW - Radiography KW - Tomography KW - Synchrotron X-ray imaging KW - Gas diffusion layer (GDL) KW - Water transport paths PY - 2011 U6 - https://doi.org/10.1016/j.elecom.2011.06.023 SN - 1388-2481 VL - 13 IS - 9 SP - 1001 EP - 1004 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-25244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manke, I. A1 - Kardjilov, N. A1 - Schäfer, R. A1 - Hilger, A. A1 - Grothausmann, R. A1 - Strobl, M. A1 - Dawson, M. A1 - Grünzweig, C. A1 - Tötzke, C. A1 - David, C. A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Hentschel, Manfred P. A1 - Banhart, J. T1 - Three-dimensional imaging of magnetic domains with neutron grating interferometry N2 - This paper gives a brief overview on3D imaging of magnetic domains with shearing grating neutron tomography. We investigated the three-dimensional distribution of magnetic domain walls in the bulk of a wedge-shaped FeSi single crystal. The width of the magnetic domains wasanalyzed at different locations within the crystal. Magnetic domains close to the tip of the wedge are much smaller than in the bulk. Furthermore, the three-dimensional shape of individual domains wasinvestigated. We discuss prospects and limitations of the applied measurement technique. KW - Neutron imaging KW - Tomography KW - Magnetic domains KW - Grating interferometry KW - Darkfield imaging KW - Shearing gratings KW - Talbot-Lau KW - Three-dimensional data quantification KW - Tomographic reconstruction PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-341919 SN - 1875-3892 VL - 69 SP - 404 EP - 412 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-34191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grothausmann, R. A1 - Zehl, G. A1 - Manke, I. A1 - Fiechter, S. A1 - Bogdanoff, P. A1 - Dorbandt, I. A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Hentschel, Manfred P. A1 - Schumacher, G. A1 - Banhart, J. T1 - Dreidimensionale Charakterisierung von Katalysatornanopartikeln N2 - We present transmission electron microscope (TEM) tomography investigations of ruthenium-based fuel cell catalyst materials as employed in direct methanol fuel cells (DMFC). The digital three-dimensional representation of the samples not only enables detailed studies on number, size, and shape but also on the local orientation of the ruthenium particles to their support and their freely accessible surface area. The shape analysis shows the ruthenium particles deviate significantly from spherical symmetry which increases their surface to volume ratio. The morphological studies help to understand the structure formation mechanisms during the fabrication as well as the high effectiveness of these catalysts in the oxygen reduction reaction at the cathode side of fuel cells. KW - Radiography KW - Tomography KW - Neutrons KW - Polymer electrolyte membrane fuel cell (PEMFC) KW - Fuel cell stack PY - 2012 SN - 1862-5282 VL - 103 IS - 1 SP - 135 EP - 136 PB - Carl Hanser CY - München AN - OPUS4-25976 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -