TY - JOUR A1 - Tötzke, C. A1 - Gaiselmann, G. A1 - Osenberg, M. A1 - Bohner, J. A1 - Arlt, Tobias A1 - Markötter, H. A1 - Hilger, A. A1 - Wieder, F. A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Hentschel, Manfred P. A1 - Banhart, J. A1 - Schmidt, V. A1 - Lehnert, W. A1 - Manke, I. T1 - Three-dimensional study of compressed gas diffusion layers using synchrotron X-ray imaging N2 - We present a synchrotron X-ray tomographic study on the morphology of carbon fiber-based gas diffusion layer (GDL) material under compression. A dedicated compression device is used to provide well-defined compression conditions. A flat compression punch is employed to study the fiber geometry at different degrees of compression. Transport relevant geometrical parameters such as porosity, pore size and tortuosity distributions are calculated. The geometric properties notably change upon compression which has direct impact on transport conditions for gas and fluid flow. The availability of broad 3D paths, which are most important for the transport of liquid water from the catalyst layer through the GDL, is markedly reduced after compression. In a second experiment, we study the influence of the channel-land-pattern of the flow-field on shape and microstructure of the GDL. A flow-field compression punch is employed to reproduce the inhomogeneous compression conditions found during fuel cell assembly. While homogenously compressed underneath the land the GDL is much less and inhomogeneously compressed under the channel. The GDL material extends far into the channel volume where it can considerably influence gas and fluid flow. Loose fiber endings penetrate deeply into the channel and form obstacles for the discharge of liquid water droplets. KW - Synchrotron X-ray tomography KW - Gas diffusion layer (GDL) KW - Microstructure KW - Water transport path KW - Pore size analysis KW - Geometrical tortuosity PY - 2014 U6 - https://doi.org/10.1016/j.jpowsour.2013.12.062 SN - 0378-7753 VL - 253 SP - 123 EP - 131 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-29979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arlt, Tobias A1 - Klages, M. A1 - Messerschmidt, M. A1 - Riesemeier, Heinrich A1 - Scholta, J. A1 - Banhart, J. A1 - Manke, I. T1 - Influence of artificial aging of gas diffusion layers on the water management of PEM fuel cells N2 - The influence of artificial aging of gas diffusion layers (GDL) on the water management within the GDL was investigated in-operando by synchrotron X-ray radiography. One GDL was subjected to an accelerated aging procedure in 30% H2O2 solution, while another GDL was pristine. Radiographic measurements were combined with temporally resolved electrical analyzes. Significant differences in cell voltage and water accumulation were observed during cell operation at steady-state conditions. The cell which contained the aged GDL featured a higher water amount especially at the anode side and a lower cell voltage. KW - Degradation KW - Liquid water PY - 2014 U6 - https://doi.org/10.1149/2.004402eel SN - 2162-8726 VL - 3 IS - 2 SP - F7 EP - F9 PB - ECS CY - Pennington, NJ, USA AN - OPUS4-32410 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -