TY - JOUR A1 - Arlt, Tobias A1 - Manke, I. A1 - Wippermann, K. A1 - Riesemeier, Heinrich A1 - Mergel, J. A1 - Banhart, J. T1 - Investigation of the local catalyst distribution in an aged direct methanol fuel cell MEA by means of differential synchrotron X-ray absorption edge imaging with high energy resolution N2 - Synchrotron X-ray absorption edge imaging with high energy resolution was applied to study aging of fuel cell catalyst materials. The combination of an imaging and a high X-ray energy resolution set-up allows acquiring spatially resolved XAS (XANES and EXAFS) spectra. We analyzed the two-dimensional distribution of Pt and Ru in fresh and aged fuel cell catalysts. Spatially resolved XAS images were taken at the RuK edge and at the PtL3 edge. Taking radiographs above and below the absorption edges provides quantitative information about the thickness of the catalytic materials and additional chemical information. A strong influence of the flow field channels and the structure of the gas diffusion layers on the thicknesses of the catalytic elements were found: a thinner catalyst layer was found below the ribs of the flow field geometries as well as under crossing points of fiber bundles of the woven gas diffusion layers. KW - XAS KW - X-ray energy edge KW - Membrane electrode assembly KW - Direct methanol fuel cell KW - Aging mechanism KW - X-ray synchrotron radiography PY - 2013 U6 - https://doi.org/10.1016/j.jpowsour.2012.08.038 SN - 0378-7753 VL - 221 SP - 210 EP - 216 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-27372 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -