TY - JOUR A1 - Markötter, H. A1 - Manke, I. A1 - Kuhn, R. A1 - Arlt, Tobias A1 - Kardjilov, N. A1 - Hentschel, Manfred P. A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Hartnig, C. A1 - Scholta, J. A1 - Banhart, J. T1 - Neutron tomographic investigations of water distributions in polymer electrolyte membrane fuel cell stacks N2 - Neutron tomography was applied to study the 3D water distribution in full polymer electrolyte membrane fuel cell (PEMFC) stacks. The water distribution after switch-off of the fuel cell was analyzed over a period of 36 h. We found a slowly increasing water amount in the fuel cell, but only few changes within a time period of 5 h, which is about the time necessary for neutron tomography. In this way, the requirement for successful tomography was obtained. It is demonstrated how the quasi in-situ tomography technique enables us to study the water content in individual flow field channels of three-fold stacks. Flow field as well as stack design issues are addressed by this visualization method showing weak points due to a non-uniform water distribution that can be identified by means of neutron imaging. KW - Radiography KW - Tomography KW - Neutron imaging KW - Polymer electrolyte membrane fuel cell (PEMFC) KW - Manifold stack KW - Water management PY - 2012 U6 - https://doi.org/10.1016/j.jpowsour.2012.07.043 SN - 0378-7753 VL - 219 SP - 120 EP - 125 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-26317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Dabah, Eitan A1 - Hilger, A. A1 - Kardjilov, N. A1 - Manke, I. A1 - Kannengießer, Thomas T1 - Neutron imaging of hydrogen in steels T2 - Materials Science & Technology (MS&T) 2013 CY - Montreal, Quebec, Canada DA - 2013-10-27 KW - Neutron radiography KW - Hydrogen KW - Diffusion KW - Steel PY - 2013 SP - 945 EP - 950 PB - Curran CY - Red Hook, NY AN - OPUS4-29506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manke, I. A1 - Hartnig, C. A1 - Kardjilov, N. A1 - Riesemeier, Heinrich A1 - Goebbels, Jürgen A1 - Kuhn, R. A1 - Krüger, P. A1 - Banhart, J. T1 - In situ synchrotron X-ray radiography investigations of water transport in PEM fuel cells N2 - Water transport in an operating PEM fuel cell was investigated with synchrotron X-ray radiography with a spatial resolution of 3 µm and a temporal resolution of 5 s. This method allows for the detection of water accumulations with less than 10 µm diameter. We demonstrate that synchrotron X-ray imaging can dramatically expand the possibilities of imaging with high spatial and time resolution, especially as a complement to neutron radiography. Water transport processes from the first appearance of small water accumulations in the gas diffusion layer to their transport into the channel system were analysed in situ. Correlations between local effects such as water formation and operating conditions of the whole system, e.g. power variations, were found. A recently described eruptive water transport mechanism is analysed in detail. KW - Fuel cell KW - Gas diffusion layer KW - Imaging KW - Synchrotron KW - X-ray radiography KW - Two-phase flow KW - Water transport PY - 2010 U6 - https://doi.org/10.1002/fuce.200800123 SN - 1615-6846 SN - 1615-6854 VL - 10 IS - 1 SP - 26 EP - 34 PB - Wiley-VCH CY - Weinheim AN - OPUS4-22730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Williams, S. H. A1 - Hilger, A. A1 - Kardjilov, N. A1 - Manke, I. A1 - Strobl, M. A1 - Douissard, P.A. A1 - Martin, T. A1 - Riesemeier, Heinrich A1 - Banhart, J. T1 - Detection system for microimaging with neutrons N2 - A new high-resolution detector setup for neutron imaging has been developed based on infinity-corrected optics with high light collection, combined with customized mounting hardware. The system can easily be installed, handled and fitted to any existing facility, avoiding the necessity of complex optical systems or further improved electronics (CCD). This is the first time optical magnification higher than 1:1 has been used with scintillator-based neutron detectors, as well as the first implementation of infinity corrected optics for neutron imaging, achieving the smallest yet reported effective pixel size of 3.375 µm. A novel transparent crystal scintillator (GGG crystal) has been implemented with neutrons for the first time to overcome limitations of traditional powder scintillators (Li6/ZnS, Gadox). The standardized procedure for resolution measurements with the Modulation Transfer Function (MTF) is summarized to facilitate comparison between instruments and facilities. Using this new detector setup, a resolution of 14.8 µm with a field of view of 6 mm × 6 mm has been achieved while maintaining reasonable count times. These advances open a wide range of new possible research applications and allow the potential for additional future developments. KW - Instrumentation for neutron sources KW - Neutron radiography KW - Neutron detectors (cold, thermal, fast neutrons) PY - 2012 U6 - https://doi.org/10.1088/1748-0221/7/02/P02014 SN - 1748-0221 VL - 7 IS - P02014 SP - 1 EP - 26 PB - Inst. of Physics Publ. CY - London AN - OPUS4-26433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Van Tran, K. A1 - Woracek, R. A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Abou-Ras, D. A1 - Puplampu, S. A1 - Förster, C. A1 - Penumadu, D. A1 - Dahlberg, C. F. O. A1 - Banhart, J. A1 - Manke, I. T1 - Torsion of a rectangular bar: Complex phase distribution in 304L steel revealed by neutron tomography N2 - Metastable austenitic stainless steel (304L) samples with a rectangular cross-section were plastically deformed in torsion during which they experienced multiaxial stresses that led to a complex martensitic phase distribution owing to the transformation induced plasticity effect. A three-dimensional characterization of the phase distributions in these cm-sized samples was carried out by wavelength-selective neutron tomography. It was found that quantitatively correct results are obtained as long as the samples do not exhibit any considerable preferential grain orientation. Optical microscopy, electron backscatter diffraction, and finite element modeling were used to verify and explain the results obtained by neutron tomography. Altogether, neutron tomography was shown to extend the range of microstructure characterization methods towards the meso- and macroscale. KW - Neutron tomography KW - Phase distribution KW - Rectangular cross-section KW - Torsion KW - Geometrical effect PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-561649 SN - 0264-1275 VL - 222 SP - 111037 PB - Elsevier Ltd. AN - OPUS4-56164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ziesche, R.F. A1 - Hack, J. A1 - Rasha, L. A1 - Maier, M. A1 - Tan, C. A1 - Heenan, T.M.M. A1 - Markötter, Henning A1 - Kardjilov, N. A1 - Manke, I. A1 - Kockelmann, W. A1 - Brett, D.J.L. A1 - Shearing, P.R. T1 - High-speed 4D neutron computed tomography for quantifying water dynamics in polymer electrolyte fuel cells N2 - In recent years, low-temperature polymer electrolyte fuel cells have become an increasingly important pillar in a zero-carbon strategy for curbing climate change, with their potential to power multiscale stationary and mobile applications. The performance improvement is a particular focus of research and engineering roadmaps, with water management being one of the major areas of interest for development. Appropriate characterisation tools for mapping the evolution, motion and removal of water are of high importance to tackle shortcomings. This article demonstrates the development of a 4D high-speed neutron imaging technique, which enables a quantitative analysis of the local water evolution. 4D visualisation allows the time-resolved studies of droplet formation in the flow fields and water quantification in various cell parts. Performance parameters for water management are identified that offer a method of cell classification, which will, in turn, support computer modelling and the engineering of next-generation flow field designs. KW - Neutron imaging KW - Tomography KW - Polymer electrolyte membrane fuel cell PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-545978 VL - 13 IS - 1 SP - 1616 PB - Nature Publishing Group UK CY - London AN - OPUS4-54597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Y. A1 - Lu, X. A1 - Cho, J.I.S. A1 - Rasha, L. A1 - Whiteley, M. A1 - Neville, T. P. A1 - Ziesche, R. A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Manke, I. A1 - Zhang, X. A1 - Shearing, P. R. A1 - Brett, D. J. L. T1 - Multi-length scale characterization of compression on metal foam flow-field based fuel cells using X-ray computed tomography and neutron radiography N2 - The mechanical compression of metal foam flow-field based polymer electrolyte fuel cells (PEFCs) is critical in determining the interfacial contact resistance with gas diffusion layers (GDLs), reactant flow and water management. The distinct scale between the pore structure of metal foams and the entire flow-field warrant a multilength scale characterization that combines ex-situ tests of compressed metal foam samples and in-operando analysis of operating PEFCs using X-ray computed tomography (CT) and neutron radiography. An optimal ‘medium’ compression was found to deliver a peak power density of 853 mW/cm². The X-ray CT data indicates that the compression process significantly decreases the mean pore size and narrows the pore size distribution of metal foams. Simulation results suggest compressing metal foam increases the pressure drop and gas velocity, improving the convective liquid water removal. This is in agreement with the neutron imaging results that demonstrates an increase in the mass of accumulated liquid water with minimum compression compared to the medium and maximum compression cases. The results show that a balance between Ohmic resistance, water removal capacity and parasitic power is imperative for the optimal performance of metal foam based PEFCs. KW - Fuel cell KW - Compression effect KW - Metal foam microstructure KW - Neutron radiography KW - X-ray CT PY - 2021 U6 - https://doi.org/10.1016/j.enconman.2020.113785 VL - 239 SP - 10 EP - 113785 PB - Elsevier Ltd. AN - OPUS4-53842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hilger, A. A1 - Kardjilov, N. A1 - Lange, A. A1 - Kupsch, Andreas A1 - Hentschel, M. P. A1 - Manke, I. T1 - Neutron darkfield imaging of fiber composites N2 - While X-ray based darkfield imaging with grating interferometers is already widely used, darkfield imaging with neutrons has still a relatively small user community focused mostly on magnetic materials. Here, we demonstrate the application of neutron darkfield imaging byTalbot-Lau type grating interferometry to fiber reinforced plastics. Common carbon and glass fiber composites have been investigated including characteristic damage structures. The darkfield images show a strong signal response caused by fiber delamination, suitable fiber direction, particles, pores and cracks. The basic principles of neutron darkfield imaging applied to fiber composites are highlighted. KW - Neutron radiography KW - Darkfield imaging KW - Talbot-Lau interferometer KW - Fiber composites KW - Non-destructive testing PY - 2021 U6 - https://doi.org/10.1515/mt-2020-0103 SN - 2195-8572 SN - 0025-5300 VL - 63 IS - 7 SP - 623 EP - 629 PB - De Gruyter CY - Berlin AN - OPUS4-53077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ziesche, R. F. A1 - Robinson, J. B. A1 - Markötter, Henning A1 - Bradbury, R. A1 - Tengattini, A. A1 - Lenoir, N. A1 - Helfen, L. A1 - Kockelmann, W. A1 - Kardjilov, N. A1 - Manke, I. A1 - Brett, D. J. L. A1 - Shearing, P. R. T1 - Editors’ Choice—4D Neutron and X-ray Tomography Studies of High Energy Density Primary Batteries: Part II. Multi-Modal Microscopy of LiSOCl2 Cells N2 - The ability to track electrode degradation, both spatially and temporally, is fundamental to understand performance loss during operation of lithium batteries. X-ray computed tomography can be used to follow structural and morphological changes in electrodes; however, the direct detection of electrochemical processes related to metallic lithium is difficult due to the low sensitivity to the element. In this work, 4-dimensional neutron computed tomography, which shows high contrast for lithium, is used to directly quantify the lithium diffusion process in spirally wound Li/SOCl2 primary cells. The neutron dataset enables the quantification of the lithium transport from the anode and the accumulation inside the SOCl2 cathode to be locally resolved. Complementarity between the collected neutron and X-ray computed tomographies is shown and by applying both methods in concert we have observed lithium diffusion blocking by the LiCl protection layer and identified all cell components which are difficult to distinguish using one of the methods alone. KW - Lithium-ion battery KW - Room-temperature KW - Thermal runaway KW - Gas evolution KW - Cells PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-520890 VL - 167 SP - 140509 PB - IOP Science AN - OPUS4-52089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pacheco, V. A1 - Marattukalam, J. J. A1 - Karlsson, D. A1 - Dessieux, L. A1 - Tran, K. V. A1 - Beran, P. A1 - Manke, I. A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Sahlberg, M. A1 - Woracek, R. T1 - On the relationship between laser scan strategy, texture variations and hidden nucleation sites for failure in laser powder-bed fusion N2 - While laser powder-bed fusion has overcome some of the design constraints of conventional manufacturing methods, it requires careful selection of process parameters and scan strategies to obtain favorable properties. Here we show that even simple scan strategies, complex ones being inevitable when printing intricate designs, can inadvertently produce local alterations of the microstructure and preferential grain orientation over small areas – which easily remain unnoticed across the macroscale. We describe how a combined usage of neutron imaging and electron backscatter diffraction can reveal these localized variations and explain their origin within cm-sized parts. We explain the observed contrast variations by linking the neutron images to simulated data, pole figures and EBSD, providing an invaluable reference for future studies and showing that presumably minor changes of the scan strategy can have detrimental effects on the mechanical properties. In-situ tensile tests reveal that fracture occurs in a region that was re-melted during the building process. KW - Laser powder-bed fusion KW - Texture KW - Preferential orientation KW - Diffraction contrast neutron imaging KW - Bragg-edge PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-568054 VL - 26 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-56805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -