TY - JOUR A1 - Tötzke, C. A1 - Manke, I. A1 - Hartnig, C. A1 - Kuhn, R. A1 - Riesemeier, Heinrich A1 - Banhart, J. T1 - Investigation of carbon fiber gas diffusion layers by means of synchrotron X-ray tomography N2 - The 3-dimensional spatial distribution of liquid water in different gas diffusion layer (GDL) materials was analyzed using synchrotron X-ray tomography. The capability of the method was demonstrated by virtually separating the GDL components in order to facilitate individual analysis of fiber material, liquid water and gas filled pore spaces. The influence of hydrophobic surface treatment on the water distribution in the GDL was illustrated by analyzing three GDL materials with different degrees of hydrophobicity. In the least hydrophobic sample, liquid water tends to form larger clusters which stretch out about several hundred µm inside the porous GDL. In contrast, only small water clusters were found in the strongly hydrophobic material with high Polytetrafluoroethylene (PTFE)-content as the liquid is partially pressed out of the GDL. Additionally, the influence of fiber orientation on the water distribution in the felt material was demonstrated. KW - Synchrotron X-ray tomography KW - Fuel cell KW - Gas diffusion layer (GDL) materials KW - Analysis of fiber material PY - 2011 U6 - https://doi.org/10.1149/1.3635571 SN - 1938-6737 SN - 1938-5862 VL - 41 IS - 1 SP - 379 EP - 386 CY - Pennington, NJ, USA AN - OPUS4-25348 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manke, I. A1 - Hartnig, C. A1 - Kardjilov, N. A1 - Riesemeier, Heinrich A1 - Goebbels, Jürgen A1 - Kuhn, R. A1 - Krüger, P. A1 - Banhart, J. T1 - In situ synchrotron X-ray radiography investigations of water transport in PEM fuel cells N2 - Water transport in an operating PEM fuel cell was investigated with synchrotron X-ray radiography with a spatial resolution of 3 µm and a temporal resolution of 5 s. This method allows for the detection of water accumulations with less than 10 µm diameter. We demonstrate that synchrotron X-ray imaging can dramatically expand the possibilities of imaging with high spatial and time resolution, especially as a complement to neutron radiography. Water transport processes from the first appearance of small water accumulations in the gas diffusion layer to their transport into the channel system were analysed in situ. Correlations between local effects such as water formation and operating conditions of the whole system, e.g. power variations, were found. A recently described eruptive water transport mechanism is analysed in detail. KW - Fuel cell KW - Gas diffusion layer KW - Imaging KW - Synchrotron KW - X-ray radiography KW - Two-phase flow KW - Water transport PY - 2010 U6 - https://doi.org/10.1002/fuce.200800123 SN - 1615-6846 SN - 1615-6854 VL - 10 IS - 1 SP - 26 EP - 34 PB - Wiley-VCH CY - Weinheim AN - OPUS4-22730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -