TY - CONF A1 - Maiwald, Michael T1 - Prozess-Spektroskopie Einführung in die spektroskopischen methoden der Prozessanalytik T2 - Frühjahrsschule "Industrielle Analytik" Universität Ulm CY - Ulm, Germany DA - 2012-03-19 PY - 2012 AN - OPUS4-26708 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Neuste Entwicklungen und Einsatzgebiete der Online-NMR-Spektroskopie T2 - 2. VDI-Fachkonferenz Prozessanalytische Messtechnik in der Chemieindustrie CY - Frankfurt am Main, Germany DA - 2012-02-29 PY - 2012 AN - OPUS4-25566 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Prozessanalytik 2012 Stand&Tendenzen T2 - Frühjahrsschule "Industrielle Analytik" Universität Ulm CY - Ulm, Germany DA - 2012-03-19 PY - 2012 AN - OPUS4-26709 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Büchele, Dominique A1 - Gräßer, Patrick A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Meyer, Klas A1 - Ostermann, Markus A1 - Paul, Andrea A1 - Rühlmann, Madlen A1 - Schmid, Thomas A1 - Wander, Lukas T1 - Aktuelle Herausforderungen für die Prozessanalytik – von der Online-NMR-Spektroskopie im Feld bis zum Plasmaspektrometer auf dem Acker N2 - Der Vortrag stellt einige aktuelle Herausforderungen für die Prozessanalytik und mögliche Antworten vor. Gepulste Raman-Spektrometer akkumulieren das Raman-Signal mit Hilfe schneller optischer Schalter im Picosekunden-Bereich, bevor langlebigere Fluoreszenzanregung entsteht. Damit lassen sich stark fluoreszierende Materialien untersuchen, die bislang nicht zugänglich sind. Eine weitere interessante Entwicklung ist etwa die Shifted excitation Raman difference spectroscopy (SERDS) die besonders für biologische Anwendungen interessant ist. Flexible, modulare Produktionsanlagen stellen einen vielversprechenden Ansatz für die kontinuierliche Produktion von Fein- und Spezialchemikalien dar. In einem EU-Projekt wird derzeit die Feldintegration eines Online-NMR-Sensormoduls als smartes Modul für die Prozesskontrolle vorangebracht. Dieses Modul basiert auf einem kommerziell erhältlichen Niederfeld-NMR-Spektrometer, welche zurzeit für die Anwendung im Laborbereich erhältlich ist. Für die Feldintegration wurde ein ATEX-zertifiziertes, explosionsgeschütztes Gehäuse entwickelt sowie Automationsschemen für den unbeaufsichtigten Betrieb und für die spektrale Datenauswertung erstellt. Eine sehr gut anwendbare analytische Messtechnik zur Kontrolle der elementaren Zusammensetzung von verschiedensten Materialien ist die laserinduzierte Plasmaspektroskopie (LIPS, engl. LIBS - Laser-induced Breakdown Spectroscopy). Bei der LIBS wird ein kurz gepulster Laser auf eine Probe fokussiert, um ein Leuchtplasma zu erzeugen. Das dabei erzeugte Atomemissionsspektrum ermöglicht eine qualitative und quantitative Analyse der Zusammensetzung der Probe bezüglich praktisch aller Elemente des Periodensystems. In einem aktuellen Projekt wird diese Methode neben anderen zur Online-Analyse von Ackerböden für die ortsspezifischer Bewirtschaftung (Precision Agriculture) weiterentwickelt und bewertet. T2 - Vortragsreihe Analytik, Merck KGaA CY - Darmstadt, Germany DA - 19.05.2017 KW - Prozessanalytik KW - Reaction Monitoring KW - Online NMR Spektroskopie KW - LIBS KW - RFA KW - Raman-Spektroskopie KW - BONARES KW - CONSENS PY - 2017 AN - OPUS4-40328 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Chancen für neue Automatisierungskonzepte und neue Geschäftsmodelle in der Prozessindustrie auf Basis von „Prozess-Sensoren 4.0“ und Modularisierung N2 - Für die weitere Entwicklung von der Ist‐Situation zu einer Industrie-4.0-Welt in der Prozessindustrie bestehen recht ähnliche Szenarien. Dazu werden derzeit mehrere Szenarien diskutiert. Diese reichen vom erleichterten Abruf sensorbezogener Daten über zusätzliche Kommunikationskanäle zwischen Sensor und mobilen Endgeräten über vollständig bidirektionale Kommunikation bis hin zur Einbindung der Cloud und des Internets in virtualisierte Umgebungen. Um zu einer störungsfreien Kommunikation aller Sensoren untereinander zu kommen, muss mindestens ein einheitliches Protokoll her, das alle Sensoren sprechen und verstehen. Der derzeit greifbarste offengelegte Standard, der moderne Kommunikationsanforderungen erfüllt, ist OPC Unified Architecture (OPC-UA). Viele halten das Sortieren der Kommunikationsstandards für eines der wesentlichen Errungenschaften von Industrie 4.0. Es gibt viele Parallelen zwischen der Laborgerätewelt und der Prozess-Sensor-Welt, die im Rahmen der Digitalisierung immer näher aneinanderrücken. T2 - SPECTARIS e.V., 3. Treffen Projektgruppe Schnittstellen CY - Berlin, Germany DA - 14.06.2017 KW - Prozess-Sensoren KW - Industrie 4.0 KW - SPECTARIS KW - OPC-UA KW - Automation KW - Smarte Sensoren PY - 2017 AN - OPUS4-40598 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Paul, Andrea A1 - Zientek, Nicolai A1 - Batzdorf, Lisa A1 - Emmerling, Franziska T1 - Online-qNMR-Spektroskopie zur Charakterisierung des Lösungsverhaltens von pharmazeutischen Wirkstoffen und Formulierungen N2 - Nur weit weniger als ein Prozent aller pharmazeutischen Wirkstoffe finden den Weg in die Anwendung. Grund dafür sind in fast allen Fällen die äußerst schlechten biopharmazeutischen Eigenschaften der Wirkstoffe, wie ihre Löslichkeit, Stabilität und – bei festen Darreichungsformen – ihre Kristalleigenschaften, auch wenn die Wirkstoffe eine gute Wirksamkeit oder gute toxikologische Eigenschaften aufweisen. Mit dem Trend zu höheren Molmassen bei chemischen Wirkstoffen nimmt ihre Löslichkeit in wässrigen Systemen rapide ab. Verbesserungen der Löslichkeit und des Auflösungsverhalten stellen heute die zentrale Herausforderung bei der Entwicklung neuer Arzneimittel dar und liegen im Fokus der aktuellen pharmazeutischen Forschung und Entwicklung. Für eine Verbesserung der physikalisch chemischen Eigenschaften werden verschiedene Verfahren beforscht: Mikronisierung, gezielte Salzbildung bzw. Salzscreening, Solubilisierung mit Cosolventien oder die Nutzung von Polymeren als mögliche Transportwege. Pharmazeutische Cokristalle bestehen aus einem Wirkstoff und einem sogenannten Cokri-stall-Bildner. Bei letzterem handelt es sich typischerweise um ein organisches Molekül, das ähnliche Struktureigenschaften wie der pharmazeutische Wirkstoff aufweist. Die Synthese und Charakterisierung von pharmazeutischen Cokristallen ist von patentrechtlicher Relevanz und Gegenstand aktueller Forschungen, da die Bildung solcher Cokristalle häufig mit einer Verbesserung der physikochemischen Eigenschaften der enthaltenen Wirkstoffe einhergeht. In den letzten Jahren ist es gelungen, insbesondere das Auflösungsverhalten der pharmazeutischen Wirkstoffe gezielt zu verbessern und dadurch eine optimierte Bioverfügbarkeit zu realisieren. Um einige Einschränkungen der Methoden UV/VIS-Detektion und HPLC zu umgehen, verfolgen wir das Auflösungsverhalten der Cokristalle mittels Online-NMR-Spektroskopie als ein direktes Verfahren: Die Methode erlaubt zum einen die direkte Beobachtung und Quantifizierung individueller Species, die bei der Auflösung beteiligt sind, d. h. Wirkstoff(e), Cokristallbildner und Lösungsmittel lassen sich getrennt voneinander mit einer hohen zeitlichen Auflösung und spektraler Dispersion beobachten. Ferner kommt diese Me-thode ohne Kalibrierung aus, da die NMR-Spektroskopie eine "absolute Vergleichsmethode" ist. Darüber hinaus kann die absolute Konzentration gemessen werden, wenn gegen Standards gearbeitet wird. Der Einsatz dieses Verfahrens zum Studium des Auflösungsverhaltens ist völlig neu. Perspektivisch reizvoll ist die Weiterentwicklung zu einem mikroanalytischen Verfahren, das mit äußerst geringen Substanzmengen auskommt. T2 - Institutskolloquium Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg CY - Würzburg, Germany DA - 27.07.2017 KW - Pharmazeutische Wirkstoffe KW - Pharmazeutische Formulierungen KW - Cokristalle KW - qNMR-Spektroskopie KW - Quantitative NMR-Spektroskopie KW - Auflösungsverhalten PY - 2017 AN - OPUS4-41166 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Paul, Andrea A1 - Meyer, Klas A1 - Kern, Simon T1 - NMR spectroscopy for online monitoring and process control N2 - Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. We present a range of approaches for the automated spectra analysis moving from statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modelling and Quantum Mechanical calculations). The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. Here we introduce our smart online NMR sensor module provided in an explosion proof housing as example.Based on concentration measurements of reagents and products by the NMR analyzer a continuous production and direct loop process control were successfully realized for several validation runs in a modular industrial pilot plant and compared to conventional analytical methods (HPLC, near infrared spectroscopy). The NMR analyser was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme. T2 - Global Expert Meeting Analytical Quantification, Syngenta Crop Protection AG CY - Stein, Switzerland DA - 22.05.2018 KW - Process monitoring KW - Online NMR spectroscopy KW - Indirect hard modeling KW - Benchtop NMR spectroscopy PY - 2018 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-45004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Paul, Andrea A1 - Meyer, Klas A1 - Kern, Simon T1 - Already producing or still calibrating? – Online NMR spectroscopy as smart field device N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. Here we introduce our smart online NMR sensor module provided in an explosion proof housing as example. Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. We present a range of approaches for the automated spectra analysis moving from statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modelling and Quantum Mechanical calculations). Based on concentration measurements of reagents and products by the NMR analyzer a continuous production and direct loop process control were successfully realized for several validation runs in a modular industrial pilot plant and compared to conventional analytical methods (HPLC, near infrared spectroscopy). The NMR analyser was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme (“Integrated CONtrol and SENsing”, www.consens-spire.eu). T2 - Analytical Chemists Meeting, Syngenta Crop Protection Monthey SA CY - Monthey, Switzerland DA - 23.05.2018 KW - Process monitoring KW - Online NMR spectroscopy KW - Indirect hard modeling KW - Benchtop NMR spectroscopy KW - Direct loop control PY - 2018 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-45006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Steinmüller, D A1 - Gerlach, M T1 - Wandel der Prozessanalytik vom Exot zur Informationsquelle der digitalisierten Automation N2 - Die ehemals wegen komplexer Technik und vergleichsweise hohen Wartungskosten beim Anwender ungeliebte Prozessanalysentechnik (PAT) erfährt sich mittlerweile immer mehr als etablierender Bereich mit einem großen Zuwachs und Dynamik. Die Prozesskontrolle und -steuerung über physikalische Kenngrößen wie Druck und Temperatur lässt eine weitere Optimierung der Anlagen kaum mehr zu. Nur mittels stoffspezifischer Analysen lassen sich Rohstoffschwankungen, Ausbeuten und Energieeinsatz konsequent optimieren. Der systematische Einsatz der Prozessanalysentechnik verändert Prozesse und Produktionsumgebungen und hat damit die Chance, Kernstück dezentral automatisierter Produktionseinheiten zu werden. Ein neuer Arbeitskreis der NAMUR AK 3.7 „Smarte Sensorik, Aktorik und Kommunikation“ wird diesem verstärkt Rechnung tragen. Es werden reale Anwendungsbeispiele aufgezeigt, die eine schnelle Amortisation von PAT im Prozess untermauern. T2 - ACHEMA 2018 - AUTOMATION IM DIALOG CY - Frankfurt a. M., Germany DA - 11.06.2018 KW - Prozessanalytik KW - Automation KW - Industrie 4.0 KW - Prozessanalysentechnik KW - NAMUR KW - ZVEI PY - 2018 AN - OPUS4-45193 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Maiwald, Michael A1 - Kern, Simon A1 - Meyer, Klas A1 - Wander, Lukas A1 - Bornemann-Pfeiffer, Martin T1 - Produzieren Sie schon oder kalibrieren Sie noch? – Online-NMR-Spektrometer als Smarte Feldgeräte N2 - Der Übergang von der aktuellen Automatisierungslandschaft zur nächsten Generation von Automatisierungskonzepten für die Prozessindustrie hat bereits begonnen. Intelligente Funktionen der Sensoren vereinfachen ihre Anwendung und ermöglichen eine Plug-and-Play-Integration, auch wenn sie auf den ersten Blick komplexer erscheinen mögen. Dies ist die Basis für die Digitalisierung der Prozessindustrie und hilft uns, komplexere Prozesse schneller umzusetzen. Der Vortrag fasst die derzeit diskutierten allgemeinen Anforderungen an „Smarte Feldgeräte“ zusammen und diskutiert dieses am Beispiel eines smarten Online-NMR-Sensors. NMR-Spektroskopie bietet sich durch den Vorteil der direkten Vergleichsmethode (ohne Kalibrierung) für die Prozess-Steuerung an und verringert somit die Rüstzeiten. Zudem basiert der Sensor auf physikalisch motivierten Modellen (Indirect Hard Modeling, IHM), die sich modular kombinieren lassen. Die Methoden wurden anhand eines vorgegebenen pharmazeutischen Reaktionsschrittes im Rahmen des „Horizon 2020“-Projekts CONSENS der Europäischen Union demonstriert und validiert. Zuletzt werden Anforderungen an die Weiterentwicklung der Datenauswertemethoden diskutiert, um letztlich die semantische Information aus den Messdaten herauszulesen oder das in der Industrie 4.0 geforderte „durchgehende Engineering“ für die Automatisierungskomponenten zu ermöglichen. T2 - ProcessNet-Jahrestagung und 33. DECHEMA-Jahrestagung der Biotechnologen CY - Aachen, Germany DA - 10.09.2018 KW - Prozessindustrie KW - Prozessanalytik KW - Online-NMR-Spektroskopie KW - Datenkonzepte KW - Datenanalyse KW - CONSENS PY - 2018 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-45934 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Paul, Andrea A1 - Meyer, Klas A1 - Kern, Simon T1 - Already producing or still calibrating? – Online NMR spectroscopy as smart field device N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. The talk introduces a smart online NMR sensor module provided in an explosion proof housing as example. This sensor was developed for an intensified industrial process (pharmaceutical lithiation reaction step) funded by the EU’s Horizon 2020 research and innovation programme (www.consens-spire.eu). Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. Industry 4.0, IIoT, or Lab 4.0 will enable us to handle more complex processes in shorter time. Intensified production concepts require for adaptive analytical instruments and control technology to realize short set-up times, modular control strategies. They are based on a digitized Laboratory 4.0. T2 - GA-Conference CY - BASF, Ludwigshafen, Germany DA - 16.05.2018 KW - Process Monitoring KW - Online NMR Spectroscopy KW - Industrie 4.0 KW - Indirect Hard Modeling KW - Laboratory 4.0 KW - CONSENS PY - 2018 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-44895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Wander, Lukas A1 - Kowarik, Stefan A1 - Liehr, Sascha T1 - Modular process control with compact NMR spectroscopy: From field integration to fully automated data analysis N2 - Chemical and pharmaceutical companies need to find new ways to survive successfully in a changing environment, while finding more flexible ways of product and process development to bring their products to market faster - especially high-value, high-end products such as fine chemicals or pharmaceuticals. This is complicated by changes in value chains along a potential circular economy. One current approach is flexible and modular chemical production units that use multi-purpose equipment to produce various high-value products with short downtimes between campaigns and can shorten time-to-market for new products. Online NMR spectroscopy will play an important role for plant automation and quality control, as the method brings very high linearity, matrix independence and thus works almost calibration-free. Moreover, these properties ideally enable automated and machine-aided data analysis for the above-mentioned applications. Using examples, this presentation will outline a possible more holistic approach to digitalization and the use of machine-based processes in the production of specialty chemicals and pharmaceuticals through the introduction of integrated and networked systems and processes. T2 - Benchtop NMR: From Academia to Industry CY - Online meeting DA - 28.09.2022 KW - Digital Transformatioin KW - Process Industry KW - Benchtop NMR Spectroscopy KW - Procee Analytical Technology KW - Modular Production KW - Specialty Chemicals KW - Industry 4.0 PY - 2022 UR - https://eventos.fct.unl.pt/benchtop_nmr_workshop2022/pages/welcome AN - OPUS4-55850 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Paul, Andrea A1 - Meyer, Klas A1 - Kern, Simon T1 - NMR spectroscopy for online monitoring and process control N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. Here we introduce our smart online NMR sensor module provided in an explosion proof housing as example. Due to NMR spectroscopy as an “absolute analytical comparison method”, independent of the matrix, it runs with extremely short set-up times in combination with “modular” spectral models. Such models can simply be built upon pure component NMR spectra within a few hours (i.e., assignment of the NMR signals to the components) instead of tedious calibrations runs. We present a range of approaches for the automated spectra analysis moving from statistical approach, (i.e., Partial Least Squares Regression) to physically motivated spectral models (i.e., Indirect Hard Modelling and Quantum Mechanical calculations). Based on concentration measurements of reagents and products by the NMR analyzer a continuous production and direct loop process control were successfully realized for several validation runs in a modular industrial pilot plant and compared to conventional analytical methods (HPLC, near infrared spectroscopy). The NMR analyser was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme (“Integrated CONtrol and SENsing”, www.consens-spire.eu). T2 - REsearch and Development Seminar, Syngenta Crop Protection AG CY - Münchwilen, Switzerland DA - 22.05.2018 KW - Process monitoring KW - Online NMR spectroscopy KW - Indirect hard modeling KW - Benchtop NMR spectroscopy PY - 2018 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-45003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Online NMR spectroscopy paves the way for short development times in industrial reaction and process monitoring N2 - Modular chemical production is a tangible implementation of the digital transformation of the specialty chemicals process industry. In particular, it enables acceleration of process development and thus faster time to market by flexibly interconnecting and orchestrating standardized physical modules and bringing them to life. For this purpose, specific (chemical) sensors of process analytics are needed, preferably without lengthy calibration or spectroscopic model development. An excellent example of a "direct" analytical method is online nuclear magnetic resonance (NMR) spectroscopy. NMR spectroscopy meets the requirements of a direct analytical method because of the direct correlation between the signal area in the spectrum ("counting" the nuclear spins) and the analyte amount of substance concentrations. It is also extremely linear over the concentration range. With the availability of compact benchtop NMR instruments, it is now possible to bring NMR spectroscopy directly into the field, in close proximity to specialized laboratory facilities, pilot plants, and even industrial-scale production facilities. The first systems are in TRL 8 (Qualified System with Proof of Functionality in the Field). The presentation will discuss the many building blocks of online nuclear magnetic resonance spectroscopy, from flow cells to automated data analysis. T2 - SFB 1527 HyPERiON “High Performance Compact Magnetic Resonance“ Online Seminar CY - Karlsruhe, Germany DA - 06.07.2023 KW - Online NMR Spectroscopy KW - Process Monitoring KW - Reaction Monitoring KW - Industry 4.0 KW - Automation KW - Modular Production PY - 2023 AN - OPUS4-57862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy: A Versatile Tool for Automated Continuous-Flow Production of Chemicals and Pharmaceuticals N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short down-times between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. The advances of a fully automated NMR sensor were exploited, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as , e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. Recently, AI procedures have also been successfully used for NMR data evaluation. In order to overcome the typical limitation of too small data sets from process developments, a new method was tested, which allows a physically motivated multiplication of the available reference data together with context information in order to obtain a sufficiently large data set for the training of machine learning algorithms. In future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - Compact NMR: Perspectives for (Bio)process Monitoring CY - Online meeting DA - 14.10.2020 KW - Process Industry KW - Real-time Process Monitoring KW - NMR Spectroscopy KW - Indirect Hard Modelling KW - Modular Production PY - 2020 AN - OPUS4-51430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Die neue Technologie-Roadmap "Prozess-Sensoren 4.0" T2 - NAMUR-Hauptsitzung 2015 CY - Bad Neuenahr, Germany DA - 2015-11-05 PY - 2015 AN - OPUS4-35062 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Towards "Process Sensors 4.0" - How to turn the vision to a mission? T2 - EPoSS Annual Forum 2015 CY - Leuven, Belgium DA - 2015-10-11 PY - 2015 AN - OPUS4-35059 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas A1 - Zientek, Nicolai A1 - Paul, Andrea T1 - qNMR forever – reference material metrology at high pressures and high purities N2 - Due to recent advances in technical developments of NMR instruments such as acquisition electronics and probe design, detection limits of components in liquid mixtures were improved into the lower ppm range (approx. 5–10 ppm amount of substance). This showed that modern NMR equipment is also suitable for the observation of hydrocarbon samples in the expanded fluid phase or gas phase. Since Quantitative NMR spectroscopy (qNMR) is a direct ratio method of analysis without the need of calibration it was used to determine impurities in appropriate liquid and liquefied hydrocarbon isomers up to C6, which are used for preparation of primary gas standards, e.g., natural gas or exhaust gas standards. At the same time it is possible to yield structural information with a minimum of sample preparation. Thus, cross contaminations between different isomers of the observed hydrocarbons and their (NMR-active) impurities can be identified and quantified. In general, most quantitative organic chemical measurements rely on the availability of highly purified compounds to act as calibration standards. The traceability and providence of these standards is an essential component of any measurement uncertainty budget and provides the final link of the result to the units of measurement, ideally the SI. The more recent increase in the use of qNMR for the direct assessment of chemical purity however can potentially improve the traceability and reduce the uncertainty of the measured chemical purity at a reduced cost and with less material. For example the method has beneficially been used by National Measurement institutes for recent CCQM comparisons including the CCQM–K55 series of purity studies. Traditional ‘indirect’ methods of purity analysis require that all impurities are identified and quantified, leading to a minimum of 4 individual analytical methods (organic impurities, water, solvents, inorganic residue). These multiple technique approaches measure an array of different chemical impurities normally present in purified organic chemical compounds. As many analytical methodologies have compound-specific response factors, the accuracy and traceability of the purity assessment is dependent on the availability of reference materials of the impurities being available. qNMR provides the most universally applicable form of direct purity determination without need for reference materials of impurities or the calculation of response factors but only exhibiting suitable NMR properties. The development of CRMs addressing qNMR specific measurement issues will give analysts compounds ideally suited for the analytical method and also provide full characterisation of qNMR related parameters to enable more realistic uncertainty budgets. These materials will give users the tools to exploit qNMR more easily and enable them to speed up analytical method development and reduce the time and financial burden of multiple analytical testing. T2 - 3rd Practical Application of NMR in Industry Conference (PANIC) 2015 CY - La Jolla, CA, USA DA - 09.02.2015 KW - qNMR KW - Quantitative NMR-Spektroskopie KW - Reference Material KW - Metrology PY - 2015 AN - OPUS4-36144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Zientek, Nicolai A1 - Meyer, Klas A1 - Kern, Simon A1 - Paul, Andrea T1 - Quantitative and online NMR Spectroscopy at BAM N2 - Online NMR spectroscopy, Determination of impurities of fluids, NMR process Monitoring, purity assessment T2 - NMR-Kolloquium Buchs CY - Buchs, Switzerland DA - 29.05.2015 KW - qNMR KW - Quantitative NMR-Spektroskopie KW - Online NMR Spectroscopy KW - Reaction monitoring KW - Reference material KW - Metrology PY - 2015 AN - OPUS4-36143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Innovationen in der Prozessanalytik – Welches sind die neuen Herausforderungen? N2 - Der Vortrag stellt die aktuellen Forschungsschwerpunkte zum Thema Prozessanalytik an der Bundesanstalt für Materialforschung und -prüfung (BAM) vor und nennt aktuelle Entwicklungsfelder mit dem Ziel gemeinsamer F&E-Projekte. Zunächst wird die Prozessindustrie und ihre Wertschöpfungskette vorgestellt. Daraus ergibt sich eine Motivation für Prozessanalytik. Zwischen der Prozessanalytik in der Pharmazeutische Industrie und der Chemischen Industrie bzw. Verfahrenstechnik gibt es Unterschiede, die herausgearbeitet werden. Der Vortrag schließt mit Technologiewünschen und Technologievisionen und nennt Konkrete Beispiele für Visionen für PAT, insbesondere im Kontext des Zukunftsprojekts „Industrie 4.0“ T2 - Innovationen entwickeln – Von der Idee bis zum Projektstart CY - Göttingen, Germany DA - 11.12.2014 KW - Prozessanalytik KW - Prozessindustrie KW - Innovationen KW - Pharmazeutische Industrie KW - Technologiewünsche KW - Technologievisionen KW - Industrie 4.0 PY - 2014 AN - OPUS4-36146 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -