TY - CONF A1 - Widjaja, Martinus Putra A1 - Islam, F. A1 - Joannes, S. A1 - Bunsell, A. A1 - Mair, Georg A1 - Thionnet, A. T1 - Effect of input properties on the predicted failure of a composite pressure vessel using a multiscale model N2 - It is pertinent to have a correct description of fibre strength described by the twp parameter Weibull distribution when evaluating a type Iv pressure vessel using the fibre break multiscale model developed at Mines ParisTech. Earlier studies have shown a positive comparison result when T600S fibre strength were used. This study has discovered what would be the effect on the predicted strength when T700S strength is used. T2 - FiBreMoD Conference CY - Leuven, Belgium DA - 11.12.2019 KW - Composite Pressure Vessel KW - Fibre break KW - Multiscale model KW - Weibull parameter PY - 2019 SP - 55 EP - 56 AN - OPUS4-50109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg A1 - Saul, Herbert A1 - Wang, Bin T1 - Safety criteria for the transport of hydrogen in permanently mounted composite pressure vessels N2 - The recent growing of the net of hydrogen fuelling stations increases the demands to transport compressed hydrogen on road by batterie vehicles or tube-trailers, both in composite pressure vessels. As transport regulation the ADR is applicable in Europe and adjoined regions and used for national transport in EU. This regulation provides requirements based on the burst pressure of each individual pressure vessel, regardless the capabilities of the transported hydrogen and relevant consequences resulting from worst case scenarios. In 2012, BAM (German Federal Institute for Materials Research and Testing) introduced consequence-dependent requirements and established them in national requirements concerning the “UN service life checks” etc. to consider the transported volume and pressure of gases. However, this results in a stringent requirement in case of using large pressure vessels (so called “tubes”) on vehicles. In the studies presented here, the safety measures for hydrogen road transport are identified and reviewed through some safety measures from some countries like Japan, USA and China. Subsequently, the failure consequences of using trailers, the related risks and chances are evaluated. Finally, a chance-related risk criterion is suggested to add into regulations and consequently to be defined as safety goal in standards for hydrogen transport vehicles and consequently for mounted pressure vessels. T2 - ICHS International Conference on Hydrogen Safety) 2019 CY - Adelaide, Australia DA - 24.09.2019 KW - pressure-volume product KW - probabilistic approach KW - hydrogen transport KW - risk limit KW - F-N-diagram KW - maximum acceptable consequence KW - chance-risk analysis KW - specific risk value PY - 2019 SP - 104-01 EP - 104-15 PB - International Association for Hydrogen Safety (HySafe) CY - Adelaide AN - OPUS4-50124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra A1 - Moosavi, Robabeh A1 - John, Sebastian A1 - Schumacher, David A1 - Grunwald, Marcel A1 - Auster, Jürgen A1 - Szczepaniak, Marius A1 - Mair, Georg A1 - Waske, Anja T1 - Impact damage evaluation of hydrogen composite pressure vessels by analysing computed tomography images N2 - The objective of this work is to find a method that describes the degree of damage from an impact experiment. This experiment was performed on Composite Pressure Vessels (CPV) in order to find the correlation of impact damage to the residual burst pressure. Computed Tomography (CT) approach was used to capture the before and after impact condition of the CPVs. The Wasserstein function was used to calculate how much the after impact image has differed from the original one. In the end, a good correlation was obtained to the residual burst pressure. T2 - HyFiSyn Conference CY - Online meeting DA - 15.09.2021 KW - Hydrogen KW - Composite pressure vessel KW - Carbon fibre KW - Burst test KW - Image analysis KW - Computed tomography (CT) PY - 2021 SP - 31 EP - 32 AN - OPUS4-53494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg A1 - Bock, Robert A1 - Günzel, Stephan A1 - Gesell, Stephan T1 - Monte-Carlo-Analysis of Minimum Burst Requirements for Composite Cylinders for Hydrogen Service N2 - For achieving Net Zero-aims hydrogen is an indispensable component, probably the main component. For the usage of hydrogen, a wide acceptance is necessary, which requires trust in hydrogen based on absence of major incidents resulting from a high safety level. Burst tests stand for a type of testing that is used in every test standard and regulation as one of the key issues for ensuring safety in use. The central role of burst and proof test is grown to historical reasons for steam engines and steel vessels but - with respect for composite pressure vessels (CPVs) - not due an extraordinary depth of outcomes. Its importance results from the relatively simple test process with relatively low costs and gets its importance by running of the different test variations in parallel. In relevant test und production standards (as e. g. ECE R134) the burst test is used in at least 4 different meanings. There is the burst test on a) new CPVs and some others b) for determining the residual strength subsequent to various simulations of ageing effects. Both are performed during the approval process on a pre-series. Then there is c) the batch testing during the CPVs production and finally d) the 100% proof testing, which means to stop the burst test at a certain pressure level. These different aspects of burst tests are analysed and compared with respect to its importance for the resulting safety of the populations of CPVs in service based on experienced test results and Monte-Carlo simulations. As main criterial for this the expected failure rate in a probabilistic meaning is used. This finally ends up with recommendations for relevant RC&S especially with respect to GTR 13. T2 - 9th International Conference on Hydrogen Safety CY - Online meeting DA - 21.09.2021 KW - Hydrogen KW - Burst test KW - Composite pressure vessels KW - Net zero KW - Monte-Carlo-Analysis PY - 2021 SP - 133 EP - 146 PB - IGEM AN - OPUS4-55668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - John, Sebastian A1 - Duffner, Eric A1 - Mair, Georg T1 - Degradation and damage analysis of composite pressure vessels via experimental modal analysis N2 - For mobile gas storage systems, the application of type IV pressure vessels is state of the art. Type IV tanks consist of an inner polymer liner fully wrapped with fibre-reinforced plastic (FRP). Because of the complex fabric of the FRP as well as a difficulty estimable interaction behaviour between the single components under load, there are still no satisfying non-destructive testing methods to assess the current state of failure nor to estimate the level of degradation accurately and economically. At BAM division 3.5, analysing the ageing process of mobile composite pressure vessels is a major task to ensure safe usage over the whole lifetime. In this context, key aspects of our ongoing research activities are the invention of new test procedures and the development of accurate lifetime prediction models. In order to determine the level of degradation or damage, one meaningful non-destructive approach is to analyse the structural dynamic behaviour via an experimental modal analysis (EMA). Over the last few years, different types and sizes of composite pressure vessels have been tested in several research projects. The presented paper gives an insight into how to extract and interpret modal parameters and how to fit them to the results of residual strength tests. T2 - NOVEM Conference 2023 CY - Auckland, New Zealand DA - 09.01.2023 KW - Composite material KW - Pressure vessel KW - Degradation KW - Modal analysis PY - 2023 SP - 57-1 EP - 57-6 AN - OPUS4-58062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Popiela, Bartosz A1 - Günzel, Stephan A1 - Mair, Georg A1 - Seidlitz, Holger ED - Nabizada, A. ED - Dechany, A. ED - Carré, B. ED - Ghogare, D. ED - Stendardo, E. ED - Lappa, F. ED - Vanlaere, J. ED - Mendoza, M. J. ED - Dejonghe, M. ED - Daese, M. ED - Namazifard, N. ED - Jacops, R. ED - Jottrand, S. ED - Pahlavan, S. T1 - Modelling of the Manufacturing Process Related Residual Stresses in Type 4 Pressure Vessels for Hydrogen Storage N2 - The publication is an extended abstract on the modelling of the manufacturing process related residual stresses in type 4 pressure vessels for hydrogen storage. A 2D analytical model based on the classical laminate theory and a 3D finite element model are introduced. The calculated residual stress state after the filament winding process as well as the stress state in service are presented and discussed. T2 - European PhD Hydrogen Conference 2024 (EPHyC2024) CY - Ghent, Belgium DA - 20.03.2024 KW - Composite KW - Hydrogen KW - Pressure vessel KW - Residual stresses KW - Filament winding KW - Carbon fiber PY - 2024 VL - 2024 SP - 445 EP - 450 PB - Hydrogen Europe Research, BE-HyFE AN - OPUS4-59779 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -