TY - CONF A1 - Widjaja, Martinus Putra A1 - Moosavi, Robabeh A1 - John, Sebastian A1 - Schumacher, David A1 - Grunwald, Marcel A1 - Auster, Jürgen A1 - Szczepaniak, Marius A1 - Mair, Georg A1 - Waske, Anja T1 - Impact damage evaluation of hydrogen composite pressure vessels by analysing computed tomography images T2 - HyFiSyn Conference N2 - The objective of this work is to find a method that describes the degree of damage from an impact experiment. This experiment was performed on Composite Pressure Vessels (CPV) in order to find the correlation of impact damage to the residual burst pressure. Computed Tomography (CT) approach was used to capture the before and after impact condition of the CPVs. The Wasserstein function was used to calculate how much the after impact image has differed from the original one. In the end, a good correlation was obtained to the residual burst pressure. T2 - HyFiSyn Conference CY - Online meeting DA - 15.09.2021 KW - Hydrogen KW - Composite pressure vessel KW - Carbon fibre KW - Burst test KW - Image analysis KW - Computed tomography (CT) PY - 2021 SP - 31 EP - 32 AN - OPUS4-53494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - López, E. A1 - Rengel, R. A1 - Mair, Georg A1 - Isorna, F. ED - Tejera, E.P. ED - Morales, C.A. ED - Marrero, J.L.R. ED - Coello, P.N. ED - Morales, J.C.R. ED - Huerta, M.V.M. ED - Elorri, M.J.L. ED - Acosta, E. A. T1 - Analysis of high-pressure hydrogen and natural gas cylinders explosions through TNT equivalent method T2 - HYCELTEC 2015 - 5th Iberian symposium on hydrogen, fuel cells and advanced batteries T2 - HYCELTEC 2015 - 5th Iberian symposium on hydrogen, fuel cells and advanced batteries CY - Tenerife, Spain DA - 2015-07-05 KW - Hydrogen KW - High-pressure KW - Explosion KW - TNT equivalent KW - Safety-distances PY - 2015 SN - 978-84-606-8621-7 SP - P_35, 302 EP - 308 AN - OPUS4-33154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg A1 - Becker, Ben A1 - Duffner, Eric A1 - John, Sebastian T1 - Storage systems for CGH2- systematic improvement of RC&s composite storage systems for compressed hydrogen - systematic improvement of regulations for more attractive storage units T2 - Conference Proceedings: 10th International Conference on Sustainable Energy and Environmental Protection - Hydrogen and Fuel Cells N2 - Hydrogen is an attractive energy carrier that requires high effort for safe storage. For ensuring safety they have to undergo a challenging approval process. Relevant standards and regulations for composite cylinders used for the transport of for on-board storage of hydrogen are currently based on deterministic (e.g. ISO 11119-3) or semi-probabilistic (UN GTR No. 13) criteria. This paper analysis the properties of such methods in regards to the evaluation of load cycle strength. Their characteristics are compared with the probabilistic approach of the BAM. Based on Monte-Carlo simulations, the available design range (mean value and scatter of strength criteria) of current concepts were exemplarily estimated. The aspect of small sample sizes is analysed and discussed with respect to the evaluation procedures. T2 - 10th International Conference on Sustainable Energy and Environmental Protection CY - Bled, Slovenia DA - 27.06.2017 KW - Probabilistic KW - Hydrogen KW - Composite KW - Cylinder KW - Regulations KW - Load cycles KW - GTR 13 KW - ISO 11119 PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-416820 SN - 978-961-286-054-7 DO - https://doi.org/10.18690/978-961-286-054-7 SP - 1 EP - 10 PB - University of Maribor Press CY - Maribor, Slovenia AN - OPUS4-41682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra A1 - Joannes, S. A1 - Bunsell, A. A1 - Mair, Georg A1 - Thionnet, A. T1 - The Application of a Reduced Volume Method for the Simulation of the Characterisation of a Carbon Fibre Pressure Vessel T2 - The 18th European Conference on Composite Materials N2 - The developed model has certain limitations of the element size to be used in the simulation to characterise the strength of composite materials. A reduced volume method is proposed in order to reduce the number of degree of freedom of the finite element simulation.This study has revealed certain configuration to be followed to speed up the computation time. T2 - The 18th European Conference on Composite Materials CY - Athens, Greece DA - 24.06.2018 KW - Composite pressure vessel KW - Fibre break KW - Integral range KW - Representative volume element PY - 2018 SP - 1193-892 AN - OPUS4-48927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg A1 - Becker, Ben A1 - Scholz, Irene T1 - Assessment of the type of statistical distribution concerning strength properties of composite cylinders T2 - ICCM20 - 20th International conference on composite materials (Proceedings) N2 - Composite materials show a degradation of properties depending on service life. This creates the necessity to find tailored methods to determine strength and residual strength of composite cylinders. The determination can be done e.g. by load cycles tests. The result needs a statistical assessment for the precise description of strength. Especially the statistical assessment of load cycle strength properties has a high uncertainty. It is unclear if a Log-Normal distribution, a WEIBULL distribution or others, describe the scatter behaviour of residual strength properties correctly. Distribution functions aim at approximating the frequency of occurrence of residual load cycle strength for high survival rates. An assumption has to be found and confirmed to prevent over-estimation of reliability. T2 - ICCM20 - 20th International conference on composite materials CY - Copenhagen, Denmark DA - 19.07.2015 KW - Composite cylinder KW - Load cycle test KW - Statistical assessment KW - Distribution function PY - 2015 SN - 978-1629931999 SP - P-ID 2217-2/Track 4-04, 1-11 AN - OPUS4-33792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisermann, René A1 - Basedau, Frank A1 - Kadoke, Daniel A1 - Gründer, Peter A1 - Schoppa, André A1 - Lehr, Christian A1 - Szczepaniak, Mariusz A1 - John, Sebastian A1 - Schukar, Marcus A1 - Munzke, Dorit A1 - Mair, Georg T1 - Distributed strain sensing with sub-centimetre resolution for the characterisation of structural inhomogeneities and material degradation of industrial high-pressure composite cylinders T2 - Proceedings of EWSHM 2018 N2 - Fibre-reinforced plastics (FRP) especially carbon-fibre-reinforced polymer (CFRP) and glass-fibre-reinforced polymer (GFRP) are commonly used materials in high pressure vessels and storage units for automotive and aerospace purposes. Optical fibres are suitable to be integrated or directly applied to the surface of FRP components. Using optical fibres it is possible to monitor the distributed strain profiles and changes within the fatigue life of a pressure vessel to ensure the operational safety. Within artificial ageing experiments we used swept wavelength interferometry (SWI) based distributed strain sensing for the monitoring of commercial high-pressure composite cylinder. This artificial ageing was performed using test conditions of 503bar pressure load (service pressure 300 bar) and 89 °C for 100 h. The polyimide coated optical fibres were glued to the surface externally in circumferential and axial direction. Using distributed strain sensing (DSS) material expansion of over 0.5% were monitored with sub-centimetre spatial resolution. Within the circumferential direction we observed up to 10 % local fluctuation compared to the median strain caused by inhomogeneous material expansion, which could cause local material fatigue. In addition, we determined material degradation manifested itself as localized remaining material expansion and/or contraction. Results have been validated by other non-destructive methods like digital strip projection. T2 - 9th European Workshop on Structural Health Monitoring (EWSHM) CY - Manchester, UK DA - 10.07.2018 KW - Distributed fibre optic sensors KW - Optical backscatter reflectometry KW - Swept wavelength interferometry (SWI) KW - Structural health monitoring (SHM) KW - Composite structures KW - Optical fibre PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-458926 SP - 1 EP - 8 AN - OPUS4-45892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wang, Bin A1 - Mair, Georg A1 - Gesell, Stephan T1 - Determination of Distribution Function used in MCS on Safety Analysis of Hydrogen Pressure Vessel T2 - ICHS (International Conference on Hydrogen Safety) 2019 - Proceedings N2 - The test data of static burst strength and load cycle strength of composite pressure vessels are often described by GAUSSian normal or WEIBULL distribution function to perform safety analyses. The goodness of assumed distribution function plays a significant role in the inferential statistics to predict the population properties by using limited test data. Often, GAUSSian and WEIBULL probability nets are empirical methods used to validate the distribution function; Anderson-Darling and Kolmogorov-Smirnov tests are the mostly favorable approaches for Goodness of Fit. However, the different approaches used to determine the parameters of distribution function lead mostly to different conclusions for safety assessments. In this study, six different methods are investigated to show the variations on the rates for accepting the composite pressure vessels according to GTR No. 13 life test procedure. The six methods are: a) Norm-Log based method, b) Least squares regression, c) Weighted least squares regression, d) A linear approach based on good linear unbiased estimators, e) Maximum likelihood estimation and f) The method of moments estimation. In addition, various approaches of ranking function are considered. In the study, Monte Carlo simulations are conducted to generate basic populations based on the distribution functions which are determined using different methods. Then the samples are extracted randomly from a population and evaluated to obtain acceptance rate. Here, the “populations” and “samples” are corresponding to the burst strength or load cycle strength of the pressure vessels made from composite material and a plastic liner (type 4) for the storage of hydrogen. To the end, the results are discussed, and the best reliable methods are proposed. T2 - ICHS International Conference on Hydrogen Safety) 2019 CY - Adelaide, Australia DA - 24.09.2019 KW - Monte-Carlo Simulation KW - Distribution function KW - Weibull Distribution PY - 2019 SP - 103-1 EP - 103-16 AN - OPUS4-50383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra A1 - Joannes, S. A1 - Bunsell, A. A1 - Mair, Georg A1 - Thionnet, A. T1 - Defining a Reduced Volume Zone for the Simulation of Burst Test on a Composite Pressure Vessels T2 - The 8th International Conference on Structural Analysis of Advanced Materials N2 - The random nature of fibre break in composite materials has to be modelled in all part of the structure as it may contain millions of fibres. The reduced volume method was introduced to determine a smaller zone where we could characterise the strength based on the accumulation of fibre break, hence increasing the computation time T2 - The 8th International Conference on Structural Analysis of Advanced Materials CY - Tarbes, France DA - 28.08.2018 KW - Reduced volume method KW - Composite structures KW - Pressure vessels KW - Finite element method KW - Multiscale model PY - 2018 SP - 217508 AN - OPUS4-48928 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra A1 - Islam, F. A1 - Joannes, S. A1 - Bunsell, A. A1 - Mair, Georg A1 - Thionnet, A. T1 - Effect of input properties on the predicted failure of a composite pressure vessel using a multiscale model T2 - FiBreMoD Conference N2 - It is pertinent to have a correct description of fibre strength described by the twp parameter Weibull distribution when evaluating a type Iv pressure vessel using the fibre break multiscale model developed at Mines ParisTech. Earlier studies have shown a positive comparison result when T600S fibre strength were used. This study has discovered what would be the effect on the predicted strength when T700S strength is used. T2 - FiBreMoD Conference CY - Leuven, Belgium DA - 11.12.2019 KW - Composite Pressure Vessel KW - Fibre break KW - Multiscale model KW - Weibull parameter PY - 2019 SP - 55 EP - 56 AN - OPUS4-50109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg A1 - Saul, Herbert A1 - Wang, Bin T1 - Safety criteria for the transport of hydrogen in permanently mounted composite pressure vessels T2 - ICHS (International Conference on Hydrogen Safety) 2019 - Proceedings N2 - The recent growing of the net of hydrogen fuelling stations increases the demands to transport compressed hydrogen on road by batterie vehicles or tube-trailers, both in composite pressure vessels. As transport regulation the ADR is applicable in Europe and adjoined regions and used for national transport in EU. This regulation provides requirements based on the burst pressure of each individual pressure vessel, regardless the capabilities of the transported hydrogen and relevant consequences resulting from worst case scenarios. In 2012, BAM (German Federal Institute for Materials Research and Testing) introduced consequence-dependent requirements and established them in national requirements concerning the “UN service life checks” etc. to consider the transported volume and pressure of gases. However, this results in a stringent requirement in case of using large pressure vessels (so called “tubes”) on vehicles. In the studies presented here, the safety measures for hydrogen road transport are identified and reviewed through some safety measures from some countries like Japan, USA and China. Subsequently, the failure consequences of using trailers, the related risks and chances are evaluated. Finally, a chance-related risk criterion is suggested to add into regulations and consequently to be defined as safety goal in standards for hydrogen transport vehicles and consequently for mounted pressure vessels. T2 - ICHS International Conference on Hydrogen Safety) 2019 CY - Adelaide, Australia DA - 24.09.2019 KW - pressure-volume product KW - probabilistic approach KW - hydrogen transport KW - risk limit KW - F-N-diagram KW - maximum acceptable consequence KW - chance-risk analysis KW - specific risk value PY - 2019 SP - 104-01 EP - 104-15 PB - International Association for Hydrogen Safety (HySafe) CY - Adelaide AN - OPUS4-50124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg A1 - Bock, Robert A1 - Günzel, Stephan A1 - Gesell, Stephan T1 - Monte-Carlo-Analysis of Minimum Burst Requirements for Composite Cylinders for Hydrogen Service T2 - International Conference on Hydrogen Proceedings Safety N2 - For achieving Net Zero-aims hydrogen is an indispensable component, probably the main component. For the usage of hydrogen, a wide acceptance is necessary, which requires trust in hydrogen based on absence of major incidents resulting from a high safety level. Burst tests stand for a type of testing that is used in every test standard and regulation as one of the key issues for ensuring safety in use. The central role of burst and proof test is grown to historical reasons for steam engines and steel vessels but - with respect for composite pressure vessels (CPVs) - not due an extraordinary depth of outcomes. Its importance results from the relatively simple test process with relatively low costs and gets its importance by running of the different test variations in parallel. In relevant test und production standards (as e. g. ECE R134) the burst test is used in at least 4 different meanings. There is the burst test on a) new CPVs and some others b) for determining the residual strength subsequent to various simulations of ageing effects. Both are performed during the approval process on a pre-series. Then there is c) the batch testing during the CPVs production and finally d) the 100% proof testing, which means to stop the burst test at a certain pressure level. These different aspects of burst tests are analysed and compared with respect to its importance for the resulting safety of the populations of CPVs in service based on experienced test results and Monte-Carlo simulations. As main criterial for this the expected failure rate in a probabilistic meaning is used. This finally ends up with recommendations for relevant RC&S especially with respect to GTR 13. T2 - 9th International Conference on Hydrogen Safety CY - Online meeting DA - 21.09.2021 KW - Hydrogen KW - Burst test KW - Composite pressure vessels KW - Net zero KW - Monte-Carlo-Analysis PY - 2021 SP - 133 EP - 146 PB - IGEM AN - OPUS4-55668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Miguel, N. A1 - Mair, Georg A1 - Acosta, B. A1 - Szczepaniak, Mariusz A1 - Moretto, P. T1 - Hydraulic and pneumatic pressure cycle life test results on composite reinforced tanks for hydrogen storage T2 - Proceedings of the ASME 2016 Pressure Vessels and Piping Conference N2 - Current standards governing the design, qualification and in-service inspection of carbon fibre composite cylinders do not facilitate to optimise cylinder design. The requirements have been adapted from standards for metallic cylinders and cannot easily quantify the degradation processes in composite materials. In this article, the results of hydraulic and hydrogen pressure cycle life tests performed on composite reinforced tanks with a metal liner (type 3) and with a high density polymer liner (type 4) are shown. Moreover, the degradation measured by means of residual strength of the tanks after the cycling tests have been compared. It has been found that the most critical aging for metal based composite cylinder is the gaseous cycling while type 4 designs seem to be more sensitive to hydraulic cycling at high temperature. T2 - ASME 2016 Pressure Vessels and Piping Conference CY - Vancouver, British Columbia, Canada DA - 17.07.2016 KW - Composite reinforced tanks KW - Compressed hydrogen storage KW - Design and qualification standards KW - Pressure cycle life tests KW - Safety factors PY - 2016 SN - 978-0-7918-5035-0 VL - 1A SP - 63568-1 EP - 63568-10 PB - ASME CY - Vancouver, British Columbia, Canada AN - OPUS4-36275 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg A1 - Becker, Ben T1 - Monte-Carlo-analysis of minimum load cycle requirements for composite cylinders for hydrogen T2 - Conference Proceedings: 7th International Conference on Hydrogen Safety N2 - Existing regulations and standards for the approval of composite cylinders in hydrogen service are currently based on deterministic criteria (ISO 11119-3, UN GTR No. 13). This paper provides a systematic analysis of the load cycle properties resulting from these regulations and standards. Their characteristics are compared with the probabilistic approach of the BAM. Based on Monte-Carlo simulations the available design range of all concepts is compared. In addition, the probability of acceptance for potentially unsafe design types is determined. T2 - ICHS 2017 CY - Hamburg, Germany DA - 11.09.2017 KW - Monte-Carlo KW - Hydrogen KW - Regulations KW - Probabilitic approach PY - 2017 SP - ID 202, 1 EP - 11 PB - HySafe CY - Hamburg AN - OPUS4-41944 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra A1 - Alves, M. A1 - Mavrogordato, M. A1 - Joannes, S. A1 - Bunsell, A. A1 - Mair, Georg A1 - Thionnet, A. T1 - Effect of the Time Dependent Loading of Type IV Cylinders Using a Multiscale Model T2 - 8th International Conference on Hydrogen Safety (ICHS) N2 - The Reduced Volume Method (RVM) has been used to evaluate the multiscale fibre break model developed at Mines ParisTech. It allows the model to be assigned only at certain part of the structures without necessarily compromising the final prediction. An attempt to model a simple unidirectional composite structure has also been carried out and gave a satisfying result. This paper deals with the application of the RVM to real scale type IV composite cylinders, where its stacking sequence was evaluated through micro-CT scans conducted with the collaboration of the University of Southampton. Two modelling geometries were evaluated and compared with the corresponding experimental results. T2 - 8th International Conference on Hydrogen Safety (ICHS) CY - Adelaide, Australia DA - 24.09.2019 KW - Fibre break KW - Multiscale modelling KW - Type IV pressure vessel KW - Time dependent loading PY - 2019 SP - ID131 AN - OPUS4-49273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg A1 - Scherer, Florian ED - Carcassi, M.N. T1 - The slow burst testing of composite cylinders - Part II: Statistic evaluation of sample test results T2 - ICHS2013 - 5th International conference on hydrogen safety (Proceedings) T2 - ICHS2013 - 5th International conference on hydrogen safety CY - Brussels, Belgium DA - 2013-09-09 KW - Residual strength KW - CFRP KW - Gas storage KW - Reliability KW - Sample testing PY - 2013 SN - 978-2-9601366-0-9 SP - 12 EP - 20 AN - OPUS4-29261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg A1 - Hoffmann, Martin A1 - Scherer, Florian T1 - Type approval of composite gas cylinders - Probabilistic analysis of rc&s concerning minimum burst pressure T2 - EHEC 2014 - European hydrogen energy conference (Proceedings) T2 - EHEC 2014 - European hydrogen energy conference CY - Seville, Spain DA - 2014-03-12 KW - Composite cylinders KW - Cost optimisation KW - Hydraulic cycle testing KW - Residual strength KW - Safety KW - Scatter KW - Slow burst KW - Pressure rate KW - Sustained load PY - 2014 SP - HS2-6, 242-244 AN - OPUS4-30739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - John, Sebastian A1 - Mair, Georg A1 - Schoppa, André A1 - Szczepaniak, Mariusz T1 - Monitoring of residual stresses in composite pressure vessels via modal analysis T2 - Proceedings of NOVEM 2018 N2 - Within a current research project at the Federal Institute for Materials Testing and Research (BAM), the degradation process of composite pressure vessels is studied to be able to give more accurate lifetime predictions in future. The presented research is based on type III pressure vessels consisting of an aluminium tank which is fully wrapped with carbon fibre reinforced plastics. Focus is set on the analysis of residual stresses which are induced into the pressure vessel during manufacturing process in order to increase high cycle fatigue. However, with increasing lifetime residual stress conditions do change. To be able to measure and monitor stress conditions, the application of a non-destructive measurement method is aspired. In this paper, potential of an experimental modal analysis is worked out to capture and monitor aging and degradation effects in pressure vessels. With the presented method, information about changes in residual stress can be obtained via an analysis of the modal parameters. To realize an application, first, a finite element simulation is used to prove and evaluate potential capability and validity. In the following, a test bench is set up and successively optimized in its accuracy and efficiency. Sensitivity of the applied measurement technique is experimentally ascertained trough the measurement of several prestress modified pressure vessels. Finally, experimental results are interpreted and evaluated with the help of numerically gained findings. T2 - NOVEM 2018 CY - St. Eulalia, Ibiza, Spain DA - 07.05.2018 KW - Composite pressure vessel KW - Residual stress KW - Modal analysis PY - 2018 VL - 6 SP - Paper 175090, 1 EP - 9 AN - OPUS4-45220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg T1 - Hydrogen onboard storage - an insertion of the probalistic approach into standards & regulations? T2 - Proceedings of the International Conference on Hydrogen Safety T2 - International Conference on Hydrogen Safety CY - Pisa, Italy DA - 2005-09-08 PY - 2005 UR - http://www.storhy.net/pdf/ICHS_Hydrogen_Onboard_Storage_BAM_2005-09-09.pdf SP - 42 pages PB - University of Pisa CY - Pisa AN - OPUS4-11299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg A1 - Hoffmann, Martin A1 - Schönfelder, Thorsten ED - Carcassi, M.N. T1 - The slow burst testing of composite cylinders - Part I: Slow burst testing of samples as a method for quantification of cylinder degradation T2 - ICHS2013 - 5th International conference on hydrogen safety (Proceedings) N2 - The current practise of focusing the periodic retesting of composite cylinders primarily on the hydraulic pressure test has to be evaluated as critical - with regard to the damage of the specimen as well as in Terms of their significance. This is justified by micro damages caused to the specimen by the test itself and by a lack of informative values. Thus BAM Federal Institute of Materials Research and Testing (Germany) uses a new approach of validation of composite for the determination of re-test periods. It enables the description of the state of a population of composite cylinders based on destructive tests parallel to operation. An essential aspect of this approach is the prediction of residual safe service life. In cases where it cannot be estimated by means of hydraulic load cycle tests, as a replacement the creep or burst test remains. As a combination of these two test procedures BAM suggests the 'slow burst test SBT'. On this a variety of about 150 burst test results on three design types of cylinders with plastic liners are presented. For this purpose both, the parameters of the test protocol as well as the nature and intensity of the pre-damage artificially aged test samples are analysed statistically. This leads first to an evaluation of the different types of artificial ageing but also to the clear recommendation that conventional burst tests be substituted totally if indented for assessment of composite pressure receptacles. T2 - ICHS2013 - 5th International conference on hydrogen safety CY - Brussels, Belgium DA - 09.09.2013 KW - Residual strength KW - CFRP KW - Gas storage KW - Reliability KW - Sample testing PY - 2013 SN - 978-2-9601366-0-9 SP - 1 EP - 12 AN - OPUS4-29260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - John, Sebastian A1 - Mair, Georg T1 - Sensitivity analysis of residual stresses in composite pressure vessels via modal analysis T2 - Proceedings of the INTER-NOISE 2017; 46th International Congress and Exposition on Noise Control Engineering; Taming Noise and Moving Quiet N2 - Due to high specific stiffness a nd strength properties, fibre reinforced plastics are used more and more often for the construction of pressure vessels. Within a recent research project run by the Federal Institute for Materials Research and Testing (BAM), aging process of composite pressure vessels is investigated in order to be able to give more accurate lifetime predictions in the future. Focus is set on type III pressure vessels consisting of an aluminium tank which is fully wrapped with carbon fibre reinforced plastics. In order to increase high-cycle fatigue, residual stresses are induced into the pressure vessel during manufacturing process. In particular, residual compressive stresses within the inner aluminium layer have been defined as a main parameter affecting fatigue strength. The aim is to identify and evaluate residual stresses of the pressure vessel by analysing its modal parameters. Through the set-up of a finite-element model potential capability and validity for the use of modal analysis is proven and evaluated, considering influences resulting from manufacturing deviations, too. In the following, a number of stress sensitive modes are defined. Based on these preliminary numerical investigations, a test bench is set up in order to measure pressure vessels via an experimental modal analysis. A final critical evaluation regarding the accuracy of the modal analysis is made by comparing experimental results with data obtained through simulations. T2 - INTER-NOISE 2017 46th International Congress and Exposition on Noise Control Engineering CY - Hong Kong, People's Republic of China DA - 27.08.2017 KW - Composite pressure vessel KW - Modal analysis PY - 2017 SP - 6309 EP - 6316 CY - Hong Kong AN - OPUS4-41842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -