TY - CONF A1 - Mair, Georg W. A1 - Becker, Ben A1 - Duffner, Eric A1 - John, Sebastian T1 - Composite storage systems for CGH2- systematic improvement of RC&S N2 - Conventional approval requirements exclusively ask for minimum strength values, which have to be met. The probabilistic approach estimates how likely none of the comparatively manufactured units fails during operation. Both questions are juxtaposed and compared here with respect to the load cycle tests. The influence of the sample sizes is discussed additionally. T2 - 10th INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY & ENVIRONMENTAL PROTECTION CY - Bled, Slovenia DA - 27.06.2017 KW - Probabilistic KW - Hydrogen KW - Composite KW - Cylinder KW - Regulations KW - Load cycles KW - GTR 13 PY - 2017 AN - OPUS4-41677 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg W. T1 - Probability of Fatigue of Carbon-Fibre Windings - Tests and Calculation Models Researching Input data for Pressure Vessel Optimization T2 - 7th Cz/Ger Symposium 1999 (Proceedings) CY - Liblice, Czech Republic DA - 1999-04-13 PY - 1999 AN - OPUS4-11588 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg W. T1 - Interlaboratory test of hydraualic cycling facilities T2 - StrHy-Jahrestreffen, BAM CY - Berlin, Germany DA - 2007-02-26 PY - 2007 AN - OPUS4-14508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg W. T1 - Hydraulic bursting facility of BAM T2 - StorHy-Jahrestreffen, BAM CY - Berlin, Germany DA - 2007-02-26 PY - 2007 AN - OPUS4-14505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg W. T1 - Safety in Hydrogen Supply - Sicherheit in der Wasserstoff-Versorgung N2 - This poster shows some aspects concerning how BAM contributes to safety in transport and acceptance of hydrogen as energy carrier. T2 - Evaluierung der BAM durch den Wissenschaftsrat CY - BAM, Berlin, Germany DA - 16.02.2016 KW - Safety assessment KW - Probabilistic approach KW - Efficiency in transportation PY - 2016 AN - OPUS4-39146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg W. A1 - Becker, Ben T1 - Monte-Carlo-analysis of minimum load cycle requirements for composite cylinders for hydrogen N2 - Existing regulations and standards for the approval of composite cylinders in hydrogen service are currently based on deterministic criteria (ISO 11119-3, UN GTR No. 13). This paper provides a systematic analysis of the load cycle properties resulting from these regulations and standards. Their characteristics are compared with the probabilistic approach of the BAM. Based on Monte-Carlo simulations the available design range of all concepts is compared. In addition, the probability of acceptance for potentially unsafe design types is determined. T2 - ICHS 2017 CY - Hamburg, Germany DA - 11.09.2017 KW - Monte-Carlo KW - Hydrogen KW - Regulations KW - Probabilitic approach PY - 2017 SP - ID 202, 1 EP - 11 PB - HySafe CY - Hamburg AN - OPUS4-41944 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - John, Sebastian A1 - Mair, Georg W. T1 - Sensitivity analysis of residual stresses in composite pressure vessels via modal analysis N2 - Due to high specific stiffness a nd strength properties, fibre reinforced plastics are used more and more often for the construction of pressure vessels. Within a recent research project run by the Federal Institute for Materials Research and Testing (BAM), aging process of composite pressure vessels is investigated in order to be able to give more accurate lifetime predictions in the future. Focus is set on type III pressure vessels consisting of an aluminium tank which is fully wrapped with carbon fibre reinforced plastics. In order to increase high-cycle fatigue, residual stresses are induced into the pressure vessel during manufacturing process. In particular, residual compressive stresses within the inner aluminium layer have been defined as a main parameter affecting fatigue strength. The aim is to identify and evaluate residual stresses of the pressure vessel by analysing its modal parameters. Through the set-up of a finite-element model potential capability and validity for the use of modal analysis is proven and evaluated, considering influences resulting from manufacturing deviations, too. In the following, a number of stress sensitive modes are defined. Based on these preliminary numerical investigations, a test bench is set up in order to measure pressure vessels via an experimental modal analysis. A final critical evaluation regarding the accuracy of the modal analysis is made by comparing experimental results with data obtained through simulations. T2 - INTER-NOISE 2017 46th International Congress and Exposition on Noise Control Engineering CY - Hong Kong, People's Republic of China DA - 27.08.2017 KW - Composite pressure vessel KW - Modal analysis PY - 2017 SP - 6309 EP - 6316 CY - Hong Kong AN - OPUS4-41842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - BOOK A1 - Mair, Georg W. T1 - Safety Assessment of Composite Cylinders for Gas Storage by Statistical Methods N2 - Featuring a detailed analysis of current approval requirements and the relevant safety assessment methods for gas cylinders in general and with main focus on composite cylinders for storing ompressed natural gas and hydrogen, this book demonstrates how current regulations and standards limit the ability to reduce cost and weight. Based on this data, it then highlights the potential offered by the proposed approval procedure based on probabilistic safety assessment. After addressing the economic potential of probabilistic safety assessments, the book details working procedures and improving cycles and (slow) bursts as methods for assessing residual strength. It then discusses methods for statistically evaluating test data, as well as sample- size and distribution character considerations. A definition of sample strength is elaborated in terms of the performance sheets developed by the author. On this basis, it discusses safety as a property of service life and interpreted as an issue of degradation, and explores aspects of artificial aging for simulating the end-of-life reliability level. Lastly, the book considers control and inspection aspects: quality of production, degradation prediction using destructive sample tests parallel to operation, retesting periods and correcting for underand overestimates of safe lifetime. Presented in schematic diagrams, illustrations and tables, this information enables manufacturers and operators to use this new approach in practice and supports the improvement of current regulations and standards. KW - Probabilistic KW - Statistics KW - Slow burst testing KW - Fire engulfment KW - Crash loads KW - Degradation KW - Production scatter KW - Operational loads KW - Residual strength KW - Service life KW - Design life KW - Safety KW - Risk KW - Consequences KW - Failure rate KW - Survival rate KW - Confidence level KW - Acceptance rate PY - 2017 SN - 978-3-319-49708-2 SN - 978-3-319-49710-5 DO - https://doi.org/10.1007/978-3-319-49710-5 VL - 2017 SP - I ; 1 EP - XXI; 269 PB - Springer International Publishing CY - Cham, Switzerland ET - 1. AN - OPUS4-42324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg W. T1 - Hydrogen as Energy carrier – Contributions to safety assessement of storage systems N2 - The introduction reflects the political background in Germany and worldwide concerning hydrogen as energy carrier. This leads to available hydrogen strategies and the reaction of BAM by launching the competence centre H2Safety@BAM. Fokus is set on the competence area TestCert, the special role of the division “Safety of Gas Storage Systems” there and its increasing success in research activities. The main part explains the needs for a risk-controlled market ramp-up concerning hydrogen products and appropriate measures being under development in division 3.5: risk control, tools for consequence estimation and limitation, probabilistic assessment of end of safe life, the efficiency assessment and optimization of current regulations, the structural health monitoring (SHM) with necessary improvement of measures for quality management in the digital world of safety assessment. Last but not least, the wide range of full-scale testing and simulation of worst-case scenarios is explained. T2 - Colloquium zu Antrittsvortrag Leitung Sicherheit von Gasspeichern CY - Online meeting DA - 20.08.2021 KW - H2Safety@BAM KW - Markthochlauf KW - Lebensdauervorhersage KW - statistische Bewertung KW - Risikosteuerung PY - 2021 AN - OPUS4-54617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg W. T1 - Salvage pressure receptacles - Technical background N2 - The presentation reflects the questions that have been raised by member states and NGOs. As background information details on the question how to choose a suitable salvage pressure receptacle (SPR) are provided. This leads to the need for deleting the volume limitation for SPRs and to the discussions in 2014 and 2016 on this issue. As an adequate substitution for deleting the volume limit for SPRs it is proposed to limit the pressure receptacles to be stored in by a maximum pressure-volume-value of 1.5 Mio bar-litres. After some explanations to standardisation projects currently also tackling this pV-limit, some risk-based safety criteria for a limitation are mentioned with the focus of the consequence level and the general avoidance of catastrophic worst case scenarios. T2 - 57th session of TDG Sub-Committee CY - Online meeting DA - 30.11.2020 KW - Salvage pressure receptacle KW - Consequence KW - Catastrophe KW - Compressed gas PY - 2020 AN - OPUS4-53161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mair, Georg W. A1 - Becker, Ben A1 - John, Sebastian A1 - Duffner, Eric T1 - Composite storage systems for compressed hydrogen - systematic improvement of regulations for more attractive storage units N2 - Hydrogen is an attractive energy carrier that requires high effort for safe storage. For ensuring safety, they must undergo a challenging approval process. Relevant standards and regulations for composite cylinders used for the transport of hydrogen and for its onboard storage are currently based on deterministic (e.g. ISO 11119-3) or semi-probabilistic (UN GTR No. 13) criteria. This paper analysis the properties of such methods with respect to the evaluation of load cycle strength. Their characteristics are compared with the probabilistic approach of the BAM. Based on Monte-Carlo simulations, the available design range (mean value and scatter of strength criteria) of current concepts was exemplarily estimated. The aspect of small sample sizes is analysed and discussed with respect to the evaluation procedures. KW - Probabilistic KW - Monte-Carlo KW - Regulations KW - Composite cylinder KW - Hydrogen vehicles KW - Transport of dangerous goods PY - 2018 DO - https://doi.org/10.1016/j.ijhydene.2018.04.068 SN - 0360-3199 VL - 45 IS - 25 SP - 13672 EP - 13679 PB - Elsevier Ltd AN - OPUS4-46856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg W. T1 - Hydrogen onboard storage - an insertion of the probalistic approach into standards & regulations? T2 - International Conference on Hydrogen Safety CY - Pisa, Italy DA - 2005-09-08 PY - 2005 UR - http://www.storhy.net/pdf/ICHS_Hydrogen_Onboard_Storage_BAM_2005-09-09.pdf SP - 42 pages PB - University of Pisa CY - Pisa AN - OPUS4-11299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg W. T1 - Blasting Splinter Protection Tower and Focus Points in Research and RCS N2 - Firstly, the modular fragmentation protection components are presented and the concept of the currently realised, cube-shaped tower is shown. This temporary tower was exposed to various explosive loads up to the level of 10 kg TNT. The orthogonality of the pressure effect is clearly recognisable. The pressure peak is reduced by 15% in the direction of the openings and the wind effect is reduced by around 40%. Both effects are greater in the direction of the diagonals. Another important point is risk management during the H2 market ramp-up. The aspects of specifically controlled reliability, consequence control and also new technologies, e.g. for the insulation of cryogenic storage facilities, are explained. Another aspect is analysing the effect of minimum requirements in standards according to risk-based criteria. Monte Carlo simulation is used for this purpose. Efficient, random sample-based recurring tests and optimised and consistent data availability are further aspects. Conclusions:  Usage of hydrogen needs careful safety precautions and reliable equipment  Worst case scenarios must get prevented but possible consequences should be taken into account, also.  For the market rump-up new approaches are necessary for keeping the system running and for ensuring an adequate safety level: - probabilistic evaluation of components - improvement of NDT-methods - digital tools for data administration and sharing - simulation of effectiveness of minimum requirements in RCS - new storage concepts e.g. for LH2 T2 - 5th Germany-Korea Hydrogen Conference CY - Halle (Saale), Germany DA - 22.10.2024 KW - Risk control KW - Hydrogen transport KW - DCC KW - DCoC KW - DPP KW - TNT PY - 2024 AN - OPUS4-61440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Mair, Georg W. T1 - Probability of Fatigue of Carbon-Fibre Windings - Tests and Calculation Models Researching Input Data for Pressure Vessel Optimization T2 - 7th Bilateral Czech German symposium CY - Liblice Castle, Czech Republic DA - 1999-04-13 PY - 1999 SN - 80-8624602-7 SP - 55 CY - [S.l.] AN - OPUS4-6037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - John, Sebastian A1 - Mair, Georg W. A1 - Schoppa, André A1 - Szczepaniak, Mariusz T1 - Monitoring of residual stresses in composite pressure vessels via modal analysis N2 - Within a current research project at the Federal Institute for Materials Testing and Research (BAM), the degradation process of composite pressure vessels is studied to be able to give more accurate lifetime predictions in future. The presented research is based on type III pressure vessels consisting of an aluminium tank which is fully wrapped with carbon fibre reinforced plastics. Focus is set on the analysis of residual stresses which are induced into the pressure vessel during manufacturing process in order to increase high cycle fatigue. However, with increasing lifetime residual stress conditions do change. To be able to measure and monitor stress conditions, the application of a non-destructive measurement method is aspired. In this paper, potential of an experimental modal analysis is worked out to capture and monitor aging and degradation effects in pressure vessels. With the presented method, information about changes in residual stress can be obtained via an analysis of the modal parameters. To realize an application, first, a finite element simulation is used to prove and evaluate potential capability and validity. In the following, a test bench is set up and successively optimized in its accuracy and efficiency. Sensitivity of the applied measurement technique is experimentally ascertained trough the measurement of several prestress modified pressure vessels. Finally, experimental results are interpreted and evaluated with the help of numerically gained findings. T2 - NOVEM 2018 CY - St. Eulalia, Ibiza, Spain DA - 07.05.2018 KW - Composite pressure vessel KW - Residual stress KW - Modal analysis PY - 2018 VL - 6 SP - Paper 175090, 1 EP - 9 AN - OPUS4-45220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg W. T1 - Minimum Burst Requirements for CGH2-Pressure Receptacles N2 - The presentation is divided in two parts, each evaluates a different aspect of safety. It starts with the analysis of consequences resulting from worst case ruptures of gas cylinders. The number of harmed persons and fatalities dependent from the pressure-volume product and the kind of stored gas. In parallel, there is a national accepted rule for accepted failure rates depending from this pV-product created by BAM. When combining both aspects it become clear that the pressure-volume product can be used as a good indicator for consequences. At a level of about 120 MPa m3 the maximum consequence starts to become catastrophic character. This shows the reason why the representatives of DIN insisted in limiting relevant pV-limits for tubes and cylinders to 1 Mio. bar litres. The second part gives a raff overview on the parameters influencing the acceptance rates of borderline basic populations. This is added by some slides giving an idea for the improvement of the minimum burst requirement and finally completed by a proposal for improved acceptance criteria for the burst test. The basic idea is: an increased pV-product of tubes has the be reflected by an increased safety level. T2 - CEN TC23/WG16 CY - Paris, France DA - 21.06.2018 KW - Burst ratio KW - Acceptance rate KW - Risk KW - F-N-curve KW - PV-product KW - Catastrophe PY - 2018 AN - OPUS4-45490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg W. T1 - Open Issues of insuring Safety of CPVs by Strength testing N2 - Der Vortrag erläutert den Sicherheitsbegriff im erweiterten Sinne und führt zur Notwendigkeit eines eher risikobasierten Verständnisses der Sicherheit. Darauf aufbauend wird mithilfe der Monte-Carlo-Simulation gezeigt, wo die Schwachstellen der ECE R 134 liegen und in welche Richtung die GTR 13 in der Phase 2 optimiert werden könnte. Hierzu ist es hilfreich, die Monte-Carlo Simulation als Werkzeug weiter zu entwickeln, wozu die BAM das Vh-Konzept MoCaSiB vorstellt. N2 - The presentation explains the term “safety” in a broader sense and leads to the need for a more risk-based understanding of safety. Based on this, the Monte Carlo simulation is used to show where the weak points of the ECE R 134 are and in which direction the GTR 13 could be optimized during the currently running phase 2. For this purpose, it is helpful to improve the currently operated tool for Monte Carlo simulation, for which BAM introduced the research idea “MoCaSiB”. T2 - Sitzung 18-01 des FKT- Sonderausschusses „Sicherheit von Gas- und Wasserstoffahrzeugen“ (FKT-SA SGWF) CY - TÜV Rheinland, Köln, Germany DA - 24.05.2018 KW - Probability of failure KW - Acceptance rate KW - Survival rate KW - Basic populaiton KW - Burst ratio PY - 2018 AN - OPUS4-45469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg W. T1 - Safety Assessment of RCS by BAM N2 - The presentation explains the intended way of BAM in tackling the safety issues in the project TAHYA. The way how the term “safety” is used in TAHYA leads to the need for a more risk-based understanding of safety. Based on this, the Monte Carlo simulation is used to show where the weak points of current regulations are. Thus, a concept for optimization of relevant regulations, codes and standards will be elaborated during the project. For this purpose, it is helpful to improve the currently operated tool for Monte Carlo simulation, which will need additional data for monitoring the outcome. Strength data, that will be determined by BAM and the other partners during the already agreed test program can be used for this purpose without additional effort. T2 - Consortial Meeting TAHYA CY - Regus at Diegem, Brussels DA - 31.05.2018 KW - Risk KW - Acceptance rate KW - Survival rate KW - Composite KW - Hydrogen Storage PY - 2018 AN - OPUS4-45479 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barthélémy, H. A1 - Agnoletti, A. A1 - Bortot, P. A1 - Mair, Georg W. A1 - Zheng, J. T1 - Storage N2 - The whole conference focused on gaps in research concerning hydrogen and hydrogen safety. This presentation focus on storage aspects and shows the current gaps in research from the point of view of the authors. They have differences in background, from university via manufacturer and safety institute to hydrogen operating industry. The different purposes of storage are covered (onboard storage, stationary storage and transport of gases) as well as the different designs (steel to pure composite/plastic). T2 - "Research Priorities Workshop RPW 2018" (EC & US DOE) CY - Buxton, UK DA - 18.09.2018 KW - Strength degradation KW - Initial testing KW - Knowledge gaps PY - 2018 AN - OPUS4-46159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mair, Georg W. A1 - Becker, B. A1 - Gesell, Stephan A1 - Wang, Bin T1 - Monte-Carlo-analysis of minimum load cycle requirements for composite cylinders for hydrogen N2 - Hydrogen is an attractive energy carrier that requires high effort for safe storage. For ensuring safety, storage cylinders must undergo a challenging approval process. Relevant standards and regulations for composite cylinders used for the transport of hydrogen and for its onboard storage are currently based on deterministic (e.g. ISO 11119-3) or to some respect semi-probabilistic criteria (UN GTR No. 13; with respect to burst strength). This paper provides a systematic analysis of the load cycle properties resulting from these regulations and standards. Their characteristics are compared with the probabilistic approach of the Federal Institute for Materials Research and Testing BAM. The most important aspect of comparing different concepts is the rate for accepting designs with potentially unsafe or critical safety properties. This acceptance rate is analysed by operating Monte-Carlo simulations over the available range of production properties. T2 - ICHS 2017 CY - Hamburg, Germany DA - 11.09.2017 KW - Safety assessment KW - Failure rate KW - Ageing KW - Degradation KW - End of life KW - Production scatter PY - 2018 DO - https://doi.org/10.1016/j.ijhydene.2018.09.185 SN - 0360-3199 VL - 44 IS - 17 SP - 8833 EP - 8841 PB - Elsevier Ltd AN - OPUS4-46341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -