TY - JOUR A1 - Mair, Georg A1 - Becker, B. A1 - John, Sebastian A1 - Duffner, Eric T1 - Composite storage systems for compressed hydrogen - systematic improvement of regulations for more attractive storage units JF - International Journal of Hydrogen Energy; Special issue on the 10th International Conference on Sustainable Energy and Environmental Protection (SEEP 2017) N2 - Hydrogen is an attractive energy carrier that requires high effort for safe storage. Forensuring safety, they must undergo a challenging approval process. Relevant standardsand regulations for composite cylinders used for the transport of hydrogen and for its on-board storage are currently based on deterministic (e.g. ISO 11119-3) or semi-probabilistic(UN GTR No. 13) criteria. This paper analysis the properties of such methods withrespect to the evaluation of load cycle strength. Their characteristics are compared withthe probabilistic approach of the BAM. Based on Monte-Carlo simulations, the availabledesign range (mean value and scatter of strength criteria) of current concepts was exem-plarily estimated. The aspect of small sample sizes is analysed and discussed with respectto the evaluation procedures. KW - Probabilistic KW - Monte-Carlo KW - Regulations KW - Composite cylinder KW - Hydrogen vehicles KW - Transport of dangerous goods PY - 2020 DO - https://doi.org/10.1016/j.ijhydene.2018.04.068 SN - 0360-3199 VL - 45 IS - 25 SP - 13672 EP - 13679 PB - Elsevier Ltd. AN - OPUS4-50687 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mair, Georg A1 - Thomas, Sebastian A1 - Schalau, Bernd A1 - Wang, Bin T1 - Safety criteria for the transport of hydrogen in permanently mounted composite pressure vessels JF - International Journal of Hydrogen Energy; Special issue on the 8th International Conference on Hydrogen Safety (ICHS 2019) N2 - The recent growth of the net of hydrogen fuelling stations increases the demands to transport compressed hydrogen on road by battery vehicles or tube-trailers, both in composite pressure vessels. As a transport regulation, the ADR is applicable in Europe and adjoined regions, and is used for national transport in the EU. This regulation provides requirements based on the behaviour of each individual pressure vessel, regardless of the pressure of the transported hydrogen and relevant consequences resulting from generally possible worst case scenarios such as sudden rupture. In 2012, the BAM (German Federal Institute for Materials Research and Testing) introduced consequence-dependent requirements and established them in national transport requirements concerning the “UN service life checks” etc. to consider the transported volume and pressure of gases. This results in a requirement that becomes more restrictive as the product of pressure and volume increases. In the studies presented here, the safety measures for hydrogen road transport are identified and reviewed through a number of safety measures from countries including Japan, the USA and China. Subsequently, the failure consequences of using trailer vehicles, the related risk and the chance are evaluated. A benefit-related risk criterion is suggested to add to regulations and to be defined as a safety goal in standards for hydrogen transport vehicles and for mounted pressure vessels. Finally, an idea is given for generating probabilistic safety data and for highly efficient evaluation without a significant increase of effort. T2 - ICHS 2019 CY - Adelaide, Australia DA - 24.09.2019 KW - F-N-diagram KW - Chance-risk analysis KW - Pressure-volume product KW - Limit of acceptable consequence KW - Minimum burst pressure PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511589 DO - https://doi.org/10.1016/j.ijhydene.2020.07.268 SN - 0360-3199 VL - 46 IS - 23 SP - 12577 EP - 12593 PB - Elsevier Ltd. AN - OPUS4-51158 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Munzke, Dorit A1 - Duffner, Eric A1 - Eisermann, René A1 - Schukar, Marcus A1 - Schoppa, André A1 - Szczepaniak, Mariusz A1 - Strohhäcker, J. A1 - Mair, Georg T1 - Monitoring of type IV composite pressure vessels with multilayer fully integrated optical fiber based distributed strain sensing JF - Materials Today: Proceedings N2 - We present the results of distributed fiber optic strain sensing for condition monitoring of a hybrid type IV composite fully wrapped pressure vessel using multilayer integrated optical fibers. Distributed strain sensing was performed for a total number of 252,000 load cycles until burst of the vessel. During this ageing test material fatigue could be monitored and spatially localized. Critical material changes were detected 17,000 cycles before material failure. Results have been validated by acoustic emission analysis. T2 - 12th International Conference on Composite Science and Technology (ICCST12) CY - Sorrento, Italy DA - 08.05.2019 KW - Hybrid composite pressure vessel KW - Distributed fiber optic sensing KW - Acoustic emission analysis KW - Structural health monitoring PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516772 DO - https://doi.org/10.1016/j.matpr.2020.02.872 SN - 2214-7853 VL - 34 SP - 217 EP - 223 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-51677 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Bin A1 - Mair, Georg A1 - Islam, F. T1 - Evaluation methods for estimation of Weibull parameters used in Monte Carlo simulations for safety analysis of pressure vessels JF - Material Testing N2 - The test data for static burst strength and load cycle fatigue strength of pressure vessels can often be well described by Gaussian normal or Weibull distribution functions. There are various approaches which can be used to determine the parameters of the Weibull distribution function; however, the performance of these methods is uncertain. In this study, six methods are evaluated by using the criterion of OSL (observed significance level) from Anderson-Darling (AD) goodness of Fit (GoF), These are: a) the norm-log based method, b) least squares regression, c) weighted least squares regression, d) a linear approach based on good linear unbiased estimators, e) maximum likelihood estimation and f) method of moments estimation. In addition, various approaches of ranking function are considered. The results show that there are no outperforming methods which can be identified clearly, primarily due to the limitation of the small sample size of the test data used for Weibull analysis. This randomness resulting from the sampling is further investigated by using Monte Carlo simulations, concluding that the sample size of the experimental data is more crucial than the exact method used to derive Weibull parameters. Finally, a recommendation is made to consider the uncertainties of the limitations due to the small size for pressure vessel testing and also for general material testing. KW - Safety assessment KW - Weibull distribution parameters KW - Randomness KW - Sample size KW - Monte Carlo simulation PY - 2021 DO - https://doi.org/10.1515/mt-2020-0058 VL - 63 IS - 4 SP - 279 EP - 385 PB - De Gruyter AN - OPUS4-53105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -