TY - JOUR A1 - Schmelzer, J.W.P. A1 - Müller, Ralf A1 - Möller, J. A1 - Gutzow, I.S. T1 - Theory of nucleation in viscoelastic media: application to phase formation in glassforming melts JF - Journal of non-crystalline solids N2 - Glassforming melts behave, in the vicinity of the temperature of vitrification Tg, as viscoelastic bodies. A general theory of nucleation in a viscoelastic body developed elsewhere is applicable to the description of phase formation processes in such systems. The present contribution is directed to the demonstration of the relevance of this proposed general theory to describing phase transformation processes in glassforming melts. The application of the theory is shown to explain a number of experimental results on crystallization of glassforming melts, which have not found a satisfactory interpretation so far. PY - 2003 DO - https://doi.org/10.1016/S0022-3093(02)01428-X SN - 0022-3093 VL - 315 SP - 144 EP - 160 PB - North-Holland Publ. Co. CY - Amsterdam AN - OPUS4-2078 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ried, Peter A1 - Gaber, Martin A1 - Beyer, Katrin A1 - Müller, Ralf A1 - Kipphardt, Heinrich A1 - Kannengießer, Thomas T1 - Thermo Analytic Investigation of Hydrogen Effusion Behavior - Sensor Evaluation and Calibration JF - Steel research international N2 - The well established carrier gas analysis (CGA) method was used to test different hydrogen detectors comprising a thermal conductivity detector (TCD) and a metal oxide semiconducting (MOx) sensor. The MOx sensor provides high hydrogen sensitivity and selectivity, whereas the TCD exhibits a much shorter response time and a linear hydrogen concentration dependency. Therefore, the TCD was used for quantitative hydrogen concentration measurements above 50?µmol/mol. The respective calibration was made using N2/H2 gas mixtures. Furthermore, the hydrogen content and degassing behaviour of titanium hydride (TiH2-x) was studied. This material turned out to be a potential candidate for a solid sample calibration. Vacuum hot extraction (VHE) coupled with a mass spectrometer (MS) was then calibrated with TiH2-x as transfer standard. The calibration was applied for the evaluation of the hydrogen content of austenitic steel samples (1.4301) and the comparison of CGA-TCD and VHE-MS. KW - Hydrogen KW - Steel KW - Vacuum hot extraction KW - Carrier gas analysis KW - Titanium hydride KW - Gas calibration PY - 2011 DO - https://doi.org/10.1002/srin.201000237 SN - 1611-3683 SN - 0177-4832 VL - 82 IS - 1 SP - 14 EP - 19 PB - Verl. Stahleisen CY - Düsseldorf AN - OPUS4-23202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deubener, J. A1 - Allix, M. A1 - Davis, M.J. A1 - Duran, A. A1 - Höche, T. A1 - Honma, T. A1 - Komatsu, T. A1 - Krüger, S. A1 - Mitra, I. A1 - Müller, Ralf A1 - Nakane, S. A1 - Pascual, M.J. A1 - Schmelzer, J.W. A1 - Zanotto, E.D. A1 - Zhou, S. T1 - Updated definition of glass-ceramics JF - Journal of Non-Crystalline Solids N2 - Glass-ceramics are noted for their unusual combination of properties and manifold commercialized products for consumer and specialized markets. Evolution of novel glass and ceramic processing routes, a plethora of new compositions, and unique exotic nano- and microstructures over the past 60 years led us to review the Definition of glass-ceramics. Well-established and emerging processing methods, such as co-firing, additive manufacturing, and laser patterning are analyzed concerning the core requirements of processing glass-ceramics and the Performance of the final products. In this communication, we propose a revised, updated definition of glass-ceramics, which reads “Glass-ceramics are inorganic, non-metallic materials prepared by controlled crystallization of glasses via different processing methods. They contain at least one type of functional crystalline phase and a residual glass. The volume fraction crystallized may vary from ppm to almost 100%”. KW - Glass-ceramics definition PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-464711 DO - https://doi.org/10.1016/j.jnoncrysol.2018.01.033 SN - 0022-3093 SN - 1873-4812 VL - 501 SP - 3 EP - 10 PB - Elsevier B.V. AN - OPUS4-46471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Rouxel, T. A1 - Behrens, H. A1 - Deubener, J. A1 - Müller, Ralf T1 - Vacuum crack growth in alkali silicate glasses JF - Journal of non-crystalline solids N2 - Crack growth velocity in alkali silicate glasses was measured in vacuum across 10 orders of magnitude with double cantilever beam technique. Measured and literature crack growth data were compared with calculated intrinsic fracture toughness data obtained from Young´s moduli and the theoretical fracture surface energy estimated from chemical bond energies. Data analysis reveals significant deviations from this intrinsic brittle fracture behavior. These deviations do not follow simple compositional trends. Two opposing processes may explain this finding: a decrease in the apparent fracture surface energy due to stress-induced chemical changes at the crack tip and its increase due to energy dissipation during fracture. KW - Silicate glass KW - Brittle fracture KW - Crack growth KW - Calculated intrinsic fracture toughness PY - 2021 DO - https://doi.org/10.1016/j.jnoncrysol.2021.121094 SN - 0022-3093 VL - 572 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-53144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deubener, J. A1 - Bornhöft, H. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Lumeau, J. A1 - Glebova, L.N. A1 - Glebov, L.B. T1 - Viscosity, relaxation and elastic properties of photo-thermo-refractive glass JF - Journal of non-crystalline solids KW - Ultrasonic relaxation KW - Silicates KW - Rheology KW - Structural relaxation KW - Viscosity PY - 2009 DO - https://doi.org/10.1016/j.noncrysol.2008.10.002 SN - 0022-3093 VL - 355 SP - 126 EP - 131 PB - North-Holland Publ. Co. CY - Amsterdam AN - OPUS4-18671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf T1 - Viscous healing of Vickers indentation–induced cracks in glass JF - Journal of the American Ceramic Society N2 - AbstractViscous healing of cracks induced by the Vickers indentation in a soda lime magnesium silicate, a soda borosilicate, and a soda aluminosilicate glass (NAS) was studied by laser scanning microscopy. Plots of the crack length, width, and depth normalized to the initial crack length versus time over viscosity merge into single master curves of each of these quantities for each glass. Despite glass properties do not differ strikingly from each other, however, these master curves strongly differ among the glasses. This finding was attributed to a different interplay of various crack healing phenomena. Lateral cracks were found to be responsible for the bulging of the sample surface around the Vickers imprint, which in turn promotes radial crack widening as the main cause of healing delay. The most rapid healing of lateral cracks was observed in NAS in which bulging and crack widening were least pronounced. KW - Crack healing KW - Glass KW - Vickers indentation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587295 DO - https://doi.org/10.1111/jace.19245 SN - 0002-7820 VL - 106 IS - 10 SP - 5795 EP - 5805 PB - Wiley AN - OPUS4-58729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deubener, Joachim A1 - Müller, Ralf A1 - Behrens, H. A1 - Heide, G. T1 - Water and the glass transition temperature of silicate melts JF - Journal of non-crystalline solids N2 - Literature data on the effect of water on the glass transition in silicate melts are gathered for a broad range of total water content cw from 3 × 10-4 to 27 wt%. In terms of a reduced glass transition temperature Tg*=Tg/TgGN, where TgGN is Tg of the melt containing cw?0.02 wt% total water, a uniform dependence of Tg* on total water content (cw) is evident for silicate melts. Tg* decreases steadily with increasing water content, most strongly at the lowest water content where H2O is dominantly dissolved as OH. For water-rich melts, the variation of Tg* is less pronounced, but it does not vanish even at the largest water contents reported (?27 wt%). Tg* vs. cw is fitted by a three-component model. This approach accounts for different transition temperatures of the dry glass, hydroxyl and molecular water predicting Tg* as a weighted linear combination of these temperatures. The required but mostly unknown water speciation in the glasses was estimated using IR-spectroscopy data for hydrous sodium trisilicate and rhyolite. PY - 2003 DO - https://doi.org/10.1016/S0022-3093(03)00472-1 SN - 0022-3093 VL - 330 SP - 268 EP - 273 PB - North-Holland Publ. Co. CY - Amsterdam AN - OPUS4-3120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Balzer, R. A1 - Behrens, H. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Kiefer, P. A1 - Deubener, J. A1 - Fechtelkord, M. T1 - Water in Alkali Aluminosilicate Glasses JF - frontiers in Materials N2 - To understand the influence of water and alkalis on aluminosilicate glasses, three polymerized glasses with varying ratios of Na/K were synthesized [(22. 5-x)Na2O-xK2O-22.5 Al2O3-55 SiO2 with x = 0, 7.5, and 11.25]. Subsequently, these glasses were hydrated (up to 8 wt% H2O) in an internally heated gas pressure vessel. The density of hydrous glasses linearly decreased with water content above 1 wt%, consistent with the partial molar volume of H2O of 12 cm3/mol. Near-infrared spectroscopy revealed that hydroxyl groups are the dominant species at water content of <4 wt%, and molecular water becomes dominating at water content of >5 wt%. The fraction of OH is particularly high in the pure Na-bearing glass compared to the mixed alkali glasses. 27Al magic angle spinning-NMR spectroscopy shows that aluminum is exclusively fourfold coordinated with some variations in the local geometry. It appears that the local structure around Al becomes more ordered with increasing K/Na ratio. The incorporation of H2O reinforces this effect. The differential thermal analysis of hydrous glasses shows a significant mass loss in the range of glass transition already during the first upscan, implying the high mobility of water in the glasses. This observation can be explained by the open structure of the aluminosilicate network and by the low dissociation enthalpy of H2O in the glasses (≈ 8 kJ/mol). The effect of the dissolved H2O on the glass transition temperature is less pronounced than for other aluminosilicate glasses, probably because of the large fraction of Al in the glasses. KW - NMR spectroscopy KW - Alkali aluminosilicate glasses KW - Water speciation KW - Glass transition KW - Infrared spectroscopy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509497 DO - https://doi.org/10.3389/fmats.2020.00085 VL - 7 SP - 85 AN - OPUS4-50949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Ralf A1 - Gaber, Martin A1 - Gottschling, Peter T1 - Water release and crystallisation of glass powders JF - European journal of glass science and technology / B T2 - Physics and Chemistry of Glasses / VII Symposium on Crystallization in Glasses in Liquids CY - Sheffield, England, UK DA - 2004-07-06 PY - 2004 SN - 1753-3562 SN - 0017-1050 SN - 0031-9090 SN - 1750-6697 VL - 45 IS - 2 SP - 1 EP - 5 PB - Society of Glass Technology CY - Sheffield AN - OPUS4-6237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reinsch, Stefan A1 - Rössler, C. A1 - Bauer, Ute A1 - Müller, Ralf A1 - Deubener, J. A1 - Behrens, H. T1 - Water, the other network modifier in borate glasses JF - Journal of non-crystalline solids N2 - In the present study we have investigated whether the effect of water on properties of borate glasses resembles that of alkali oxide. Soda-lime-borate glasses with nominal compositions of x Na2O, 10 CaO, (90-x) B2O3 (x = 5, 15 and 25 mol%) were doped with up to 8 wt.% H2O by processing glass powder + distilled water in platinum capsules in an internally heated gas pressure vessel at 1523 K and 500 MPa. The water content of hydrous glasses was determined by Karl-Fischer titration and near-infrared spectroscopy. The glass transition temperature T-g. was derived from DTA and micropenetration experiments for which the effect of water loss at the surface of the hydrous glasses was studied. Heating glass samples at 10 K min(-1) in the DTA resulted in T-g values which are close to T-12 isokom temperatures confirming the equivalence of enthalpy relaxation and viscous relaxation for borate glasses. For all three glass series it is shown that T-g strongly decreases whereas the liquid fragility strongly increases upon the addition of water. These findings reveal that H2O primarily causes breaking of B-O-B bonds rather than supporting 4-fold coordinated boron as it is well-known for alkali oxides in this concentration range. (C) 2015 Elsevier B.V. All rights reserved. KW - Wasserhaltige Gläser KW - Viskosität KW - Boratgläser KW - Thermische Analyse KW - Viscosity KW - Borate glasses KW - Thermal analysis KW - Water-bearing glasses PY - 2016 DO - https://doi.org/10.1016/j.jnoncrysol.2015.10.010 SN - 0022-3093 VL - 432 SP - 208 EP - 217 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-35123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -