TY - JOUR A1 - Schiller, Wolfgang Arno A1 - Eberstein, Markus A1 - Müller, Ralf T1 - Glas-Keramik-Komposite für Mikrosysteme und Sensoren PY - 2002 SN - 1618-8721 VL - 1 IS - 2 SP - 17 PB - Deutsche Glastechnische Gesellschaft CY - Offenbach AN - OPUS4-3115 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf T1 - GlasDigital - Datengetriebener Workflow für die beschleunigte Entwicklung von Glas N2 - Das Projekt GlasDigital im Rahmen der BMBF Initiative MaterialDigital wird vorgestellt. T2 - MatFo22 CY - Berlin, Germany DA - 14.11.2022 KW - Material Digital PY - 2022 AN - OPUS4-56282 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Schottner, G. A1 - Wondraczek, L. A1 - Sierka, M. A1 - Deubener, J. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Contreras, A. A1 - Diegeler, A. A1 - Kilo, M. A1 - Pan, Z.-W. A1 - Arendt, F. A1 - Chen, Y.-F. A1 - Gogula, S. A1 - Bornhöft, H. T1 - GlasDigital: Data-driven workflow for accelerated glass development N2 - Glasses stand out by their wide and continuously tunable chemical composition and large variety of unique shaping techniques making them a key component of modern high technologies. Glass development, however, is still often too cost-, time- and energy-intensive. The use of robotic melting systems embedded in an ontology-based digital environment is intended to overcome these problems in future. As part of the German research initiative MaterialDigital, the joint project GlasDigital takes first steps in this direction. The project consortium involves the Fraunhofer ISC in Würzburg, the Friedrich Schiller University Jena (OSIM), the Clausthal University of Technology (INW), and the Federal Institute for Materials Research and Testing (BAM, Division Glasses) and aims to combine all main basic components required for accelerated data driven glass development. For this purpose, a robotic high throughput glass melting system is equipped with novel inline sensors for process monitoring, machine learning (ML)-based, adaptive algorithms for process monitoring and optimization, novel tools for high throughput glass analysis and ML-based algorithms for glass design, including software tools for data mining as well as property and process modelling. The talk gives an overview how all these tools are interconnected and illustrates their usability with some examples. T2 - USTV-DGG joint meeting CY - Orleans, France DA - 22.05.2023 KW - Glass KW - Ontology KW - Data Space KW - Workflow KW - Robotic melting PY - 2023 AN - OPUS4-60372 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Niebergall, R. A1 - Schottner, G. A1 - Wondraczek, L. A1 - Sierka, M. A1 - Deubener, J. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Contreras, A. A1 - Diegeler, A. A1 - Kilo, M. A1 - Puppe, F. A1 - Limbach, R. A1 - Pan, Z. A1 - Arendt, F. A1 - Chen, Y.-F. A1 - Gogula, S. A1 - Bornhöft, H. T1 - GlasDigital: Data-driven workflow for accelerated glass development N2 - lasses stand out by their wide and continuously tunable chemical composition and large variety of unique shaping techniques making them a key component of modern high technologies. Glass development, however, is still often too cost-, time- and energy-intensive. The use of robotic melting systems embedded in an ontology-based digital environment is intended to overcome these problems in future. As part of the German research initiative MaterialDigital, the joint project GlasDigital takes first steps in this direction. The project consortium involves the Fraunhofer ISC in Würzburg, the Friedrich Schiller University Jena (OSIM), the Clausthal University of Technology (INW), and the Federal Institute for Materials Research and Testing (BAM, Division Glasses) and aims to combine all main basic components required for accelerated data driven glass development. For this purpose, a robotic high throughput glass melting system is equipped with novel inline sensors for process monitoring, machine learning (ML)-based, adaptive algorithms for process monitoring and optimization, novel tools for high throughput glass analysis and ML-based algorithms for glass design, including software tools for data mining as well as property and process modelling. The talk gives an overview how all these tools are interconnected and illustrates their usability with some examples. T2 - HVG-DGG Fachausschuss I CY - Jena, Germany DA - 03.11.2023 KW - Glass KW - Robotic melting KW - Ontologie KW - Simulation KW - Workflow KW - Data Space PY - 2023 AN - OPUS4-60383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf T1 - Glasig-kristalline Werkstoffe für Schlüsseltechnologien - Prozessbegleitende Prüfung und Simulation N2 - Eigenschaftsprofile und Kennwertstreuungen keramischer und glaskeramischer Komponenten und Bauteile werden durch ihren Herstellungsprozess wesentlich mitbestimmt. Prozessbegleitende Prüf- und Simulationsmethoden gewinnen so wachsenden Einfluss auf die Erschließung neuer Applikationsfelder dieser Werkstoffe. Eine wichtige Rol¬le spielen hierbei oft thermokinetische Prozesse, die u. a. Wärmetransport- und Diffusionsvorgänge, Phasengrenzflächenreaktionen, das rheologische Verhalten heterogener Systeme sowie deren Gefügeevolution beim Sintern umfassen. Ziel des Vortrages ist es, diesen Trend anhand ausgewählter Bei-spiele aus der Arbeit des Fachbereichs Glas der BAM zu illustrieren. T2 - Deutsche Physikalische Gesellschaft, Vortragsreihe Gruppe 60+ der Physiker Berlin - Brandenburg CY - Berlin, Magnushaus, Germany DA - 5.4.17 KW - Prozessbegleitende Prüfung KW - LTCC PY - 2017 AN - OPUS4-44217 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf T1 - Glaspulver - Processing, Effekte, Möglichkeiten T2 - 1. Fachtagung "Starkes Glas - Herausforderungen für zukünftige Glasanwendungen" CY - Weimar, Germany DA - 2012-05-07 PY - 2012 AN - OPUS4-27419 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf T1 - Glaspulver - Processing, Effekte, Möglichkeiten T2 - Festkolloquium der Universität des Saarlandes CY - Saarbrücken, Germany DA - 2013-03-23 PY - 2013 AN - OPUS4-30853 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schiller, Wolfgang Arno A1 - Eberstein, Markus A1 - Müller, Ralf T1 - Glass Ceramic Composites for Microsystems PY - 2003 SN - 0927-4472 VL - 76 C1 SP - 54 EP - 59 PB - Elsevier CY - Amsterdam AN - OPUS4-2592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf T1 - Glass Sintering with Concurrent Crystallization and Foaming N2 - Glass powders are promising candidates for manufacturing a broad diversity of sintered materials like sintered ¬glass-ceramics, glass matrix composites or glass bonded ceramics with tailored mechanical, thermal, electrical and optical properties and complex shape. Its wide and precise adjustability makes this class of materials a key component for advanced technologies. Processing of glass or composite powders often allow even more flexibility in materials design. At the same time, however, processing can have substantial effects on the glass powder surface and sinterability. Thus, mechanical damage and surface contamination can strongly enhance surface crystallization, which may retard or even fully prevent densification. Whereas sintering and concurrent crystallization have been widely studied, partially as cooperative effort of the TC7 of the ICG, and although glass powder sintering is predominantly applied for glasses of low crystallization tendency, sintering is also limited by gas bubble formation or foaming. The latter phenomenon is much less understood and can occur even for slow crystallizing glass powders. The lecture illustrates possible consequences of glass powder processing on glass sintering, crystallization and foaming. T2 - 93rd Annual Meeting German Soc Glass Technol in conjunction with annual meeting French Union for Sci and Glass technol CY - Nuremberg, Germany DA - 13.05.2019 KW - Blähen KW - Glass KW - Kristallisation KW - Sintern PY - 2019 AN - OPUS4-50433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf T1 - Glass Sintering with Concurrent Crystallization and Foaming N2 - Glass powders are promising candidates for manufacturing a broad diversity of sintered materials like sintered glass-ceramics, glass matrix composites or glass bonded ceramics with tailored mechanical, thermal, electrical and optical properties and complex shape. Its wide and precise adjustability makes this class of materials a key component for advanced technologies. Processing of glass or composite powders often allow even more flexibility in materials design. At the same time, however, processing can have substantial effects on the glass powder surface and sinterability. Thus, mechanical damage and surface contamination can strongly enhance surface crystallization, which may retard or even fully prevent densification. Whereas sintering and concurrent crystallization have been widely studied, partially as cooperative effort of the TC7 of the ICG, and although glass powder sintering is predominantly applied for glasses of low crystallization tendency, sintering is also limited by gas bubble formation or foaming. The latter phenomenon is much less understood and can occur even for slow crystallizing glass powders. The lecture illustrates possible consequences of glass powder processing on glass sintering, crystallization and foaming. T2 - 7th Int Congress on Ceramics, Symposium Frontiers of Glass Science CY - Iguacu, Brazil DA - 17.06.2018 KW - Glass KW - Powder KW - Sintering KW - Foaming PY - 2018 AN - OPUS4-45670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zietka, S. A1 - Deubener, J. A1 - Behrens, H. A1 - Müller, Ralf T1 - Glass transition and viscosity of hydrated silica glasses N2 - The viscosity of silica glasses with different water contents was measured by penetration of sapphire microspheres in the range from 1012-1014·7 Pas at ambient pressure. Commercial silica glasses were used together with hydrous silica glasses, which were prepared by melting glass powder plus water in an internally heated pressure vessel at 2-3 kbar and 1350-1450°C. The temperature dependence of the viscosity of silica glasses with total water contents Cw of 5·4×10-4, 7·0×10-4, 1·00×10-2, and 1·55×10-2(Cw in mass fractions) can be described by Arrhenius equations. From the results, the linear dependence of the T12 isokom (K) with the logarithm of the water content was determined as T12=192-409 logCw. The analysis of the compositional dependence of the T12 isokom in the H2O-Na2O-SiO2 system reveals a temperature depression of up to 200 K for mixed water- and sodium-bearing glasses compared to H2O-SiO2 and Na2O-SiO2 glasses with same molar silica content. From these findings we conclude that protons may contribute significantly to the mixed alkali effect in glasses. KW - Wassergehalt KW - Silicatgläser KW - Viskosität PY - 2007 SN - 1753-3562 SN - 0017-1050 SN - 0031-9090 SN - 1750-6697 VL - 48 IS - 6 SP - 380 EP - 387 PB - Society of Glass Technology CY - Sheffield AN - OPUS4-18396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Diegeler, A. A1 - Schottner, G. A1 - Niebergall, R. A1 - Kilo, M. A1 - Arendt, F. A1 - Chen, Y.-F. A1 - Sierka, M. A1 - Limbach, R. A1 - Pan, Z. A1 - Wondraczek, L. A1 - Gogula, S. A1 - Bornhöft, H. A1 - Deubener, J. A1 - Waurischk, Tina A1 - Reinsch, Stefan T1 - GlassDigital: Digital Infrastructure for Data-Driven High-Throughput Glass Development N2 - Gläser zeichnen sich durch eine breite und kontinuierlich abstimmbare chemische Zusammensetzung sowie einzigartige Formgebungstechniken aus, was sie oft zur Schlüsselkomponente moderner Hochtechnologien macht. Die Glasentwicklung ist jedoch oft noch zu kosten-, zeit- und energieintensiv. Der Einsatz von robotergestützten Schmelzsystemen, eingebettet in eine Ontologie-basierte digitale Umgebung, soll diese Probleme in Zukunft überwinden. Im Rahmen der BMBF Forschungsinitiative MaterialDigital unternimmt das Verbundprojekt GlasDigital „Datengetriebener Workflow für die beschleunigte Entwicklung von Glas“ erste Schritte in diese Richtung. Das Projektkonsortium, an dem das Fraunhofer ISC in Würzburg, die Friedrich-Schiller-Universität Jena (OSIM), die Technische Universität Clausthal (INW) und die Bundesanstalt für Materialforschung und -prüfung (BAM, Fachgruppe Glas) beteiligt sind, will alle wesentlichen Basiskomponenten für eine beschleunigte datengetriebene Glasentwicklung zusammenführen. Zu diesem Zweck wird ein robotergestütztes Hochdurchsatz-Glasschmelzsystem mit neuartigen Inline-Sensoren zur Prozessüberwachung, auf maschinellem Lernen (ML) basierenden adaptiven Algorithmen zur Prozessüberwachung und -optimierung, neuartigen Werkzeugen für die Hochdurchsatz-Glasanalyse sowie ML-basierten Algorithmen zum Glasdesign, Data Mining sowie Eigenschafts- und Prozessmodellierung ausgestattet. Der Vortrag gibt einen Überblick darüber, wie all diese Komponenten miteinander verzahnt sind, und veranschaulicht ihre Nutzbarkeit anhand einiger Beispiele. T2 - HVG-Fortbildungskurs CY - Offenbach, Germany DA - 27.11.2023 KW - Glas KW - Ontology KW - Workflow KW - Simulation KW - Robotic melting PY - 2023 AN - OPUS4-60386 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eichelbaum, M. A1 - Rademann, K. A1 - Weigel, W. A1 - Löchel, B. A1 - Radtke, Martin A1 - Müller, Ralf T1 - Gold-Ruby Glass in a New Light: On the Microstructuring of Optical Glasses with Synchrotron Radiation KW - Nanoparticles KW - Glasses KW - Synchrotron radiation KW - X-ray lithography KW - Surface plasmon resonance KW - Luminescence PY - 2007 SN - 0017-1557 VL - 40 IS - 4 SP - 1 EP - 5 CY - London AN - OPUS4-16432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Herstellung von Gläsern mittlerer Wassergehalte T2 - 79. Glastechnische Tagung CY - Würzburg, Deutschland DA - 2005-05-23 KW - Glas KW - Wassergehalt PY - 2005 SN - 3-921089-43-3 SP - 4 Seiten PB - Deutsche Glastechnische Gesellschaft CY - Offenbach AN - OPUS4-7606 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Marzok, Ulrich A1 - Reetz, R. A1 - Trunkhardt, M. T1 - High-temperature laser profilometry N2 - Advanced methods for 3D green density characterization like computed tomography and 3D FE sinter modeling can be utilized for increasing the reliability of sintered components. The experimental in situ observation of sintering, however, is currently restricted to silhouette methods, i.e. heating microscopy. For complex shaped samples, in situ shape screening during shrinkage would allow much better validation of 3D sinter simulation models. Further, by revealing temporary sinter warpage, 3D high-temperature shape screening allows to locate potential defects of complex sintered components. Against this background, BAM developed a testing device for in situ 3D high-temperature shape screening for ceramic and glass-ceramic tapes up to 1000°C [1-3]. Current work is focused on dropping this restriction in sample shape and temperature. The poster illustrates the current state of this work and possible applications of the method e.g. in detecting sinter warpage of metallized glass-ceramic LTCC tapes. T2 - SGT Centenary Conference, & ESG 2016 CY - Sheffield, UK DA - 04. 09. 2016 KW - Laser profilometry KW - 3D High-temperature shape screening KW - Sintering PY - 2016 AN - OPUS4-38320 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marzok, Ulrich A1 - Müller, Ralf A1 - Schadrack, Reinhard A1 - Krauhausen, M. A1 - Burgstedt, F. A1 - Brode, W. A1 - Reetz, R. T1 - High-temperature laser profilometry for ceramic tapes N2 - Advanced ceramics are promising key components for microsystems engineering, communication Technology and medical engineering. Driven by steadiiy increasing demands on dimensional accuracy of components and Integration density, sintering has to be controlled at an unprecedented degree of precision. Being most crucial for components of complex shape, graded or heterogeneous-composed parts like LTCC multilayers for microsystems, precise control of sintering has a decisive influence on the dimensional accuracy, mechanical integrity and reliability of sintered components. Thus, permanent or temporary shape distortions or warping during sintering may result from spatially heterogeneous microstructure and temperature distribution, e.g. during the co-firing process of green multilayer Stacks printed with metallization and other functional pastes. Whereas permanent warping can be easily measured after sintering, temporary warping during firing is more difficult to measure. Nonetheless, this effect may cause latent failures later, which often limit the applicability of ceramic components. PY - 2013 SN - 0173-9913 SN - 0196-6219 VL - 90 IS - 4 SP - E35 EP - E40 PB - Göller CY - Baden-Baden AN - OPUS4-28500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Marzok, U. T1 - Hochtemperatur Laserprofilometrie (HTLP) N2 - Der Vortrag gibt einen Überblick über Funktionsweise und Anwendungsmöglichkeiten der an der BAM entwickelten Messmethode der Hochtemperatur-Laserprofilomtrie T2 - Seminar Instrumentelle Analytik, Fakultät III Prozesswissenschaften, Lehrstuhl Keramik TU Berlin CY - TU Berlin, Germany DA - 26.01.2018 KW - Sinterung KW - Hochtemperatur KW - Formerkennung PY - 2018 AN - OPUS4-46475 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Marzok, Ulrich A1 - Müller, Ralf A1 - Krauhausen, M. A1 - Burgstedt, F. A1 - Brode, W. T1 - Hochtemperatur shape screening keramischer Bauteile KW - Keramikherstellung KW - Sintern KW - Formmessung KW - Kontur KW - Lasermesstechnik PY - 2010 UR - http://edok01.tib.uni-hannover.de/edoks/e01fb12/685831345.pdf IS - Schlussbericht / Az: II D 5 - 25/06 SP - 1 EP - 54 CY - Berlin AN - OPUS4-28373 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marzok, Ulrich A1 - Müller, Ralf A1 - Schadrack, Reinhard A1 - Krauhausen, M. A1 - Burgstedt, F. A1 - Brode, W. A1 - Reetz, R. T1 - Hochtemperatur-Laserprofilometrie an keramischen Bauteilen N2 - Hochleistungssinterwerkstoffe spielen eine wachsende Rolle in derzeitigen Schlüsseltechnologien wie der Mikrosystem-, Informations-, Kommunikations- und Medizintechnik. Dabei steigen die Anforderungen an die präzise Steuerung der Sinterung. Besonders für komplexe, gradierte oder heterogen zusammengesetzte Formkörper wie zum Beispiel keramische LTCC-Multilayer für die Mikrosystemtechnik hat die exakte Beherrschung dieses Prozessschrittes wesentlichen Einfluss auf die Maßhaltigkeit, mechanische Integrität und Zuverlässigkeit der gesinterten Bauteile. Bedingt durch die Heterogenität der mehrlagigen und mit Leit- und anderen Funktionspasten bedruckten Sinterkörper hinsichtlich ihrer sinterphysikalischen oder thermischen Eigenschaften können bleibende oder temporäre Verwerfungen beim Schrumpfungsprozess auftreten, wobei letztere unter Umständen Ursache latenter Fehler im späteren Bauteil sind. PY - 2013 SN - 0173-9913 SN - 0196-6219 VL - 90 IS - 3 SP - D19 EP - D24 PB - Göller CY - Baden-Baden AN - OPUS4-28013 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Marzok, Ulrich A1 - Müller, Ralf A1 - Schadrack, Reinhard A1 - Krauhausen, M. A1 - Burgstedt, F. A1 - Brode, W. A1 - Reetz, R. ED - Kriegesmann, J. T1 - Hochtemperatur-Laserprofilometrie an keramischen Bauteilen N2 - Es wurde ein Gerät zur In-situ-Kontrolle des Sinterns keramischer Bauteile mit Hilfe der Hochtemperatur-Lasertriangulation aufgebaut. Durch Rotation der Probe und gleichzeitiger Positionierung des Laserabstandssensors erfolgt die dreidimensionale Erfassung der Topografie der Probenoberfläche. Derzeit können flache Proben mit den Maßen < 20 cm x 20 cm x 1 cm bis 1000 °C untersucht werden. Die örtliche Wiederholpräzision des verwendeten Lasersensors beträgt 10 µm bei 20 °C und 15 µm bei 1000 °C. Die lineare Positioniergenauigkeit des Sensors liegt bei 1 µm, die Winkelauflösung der Drehung des Probentellers beträgt 0,0025 °. Daten für ein 3D-Oberflächenprofil werden in etwa 2 bis 3 Minuten erzeugt. Spezielle Linienprofile erhält man bei einer Messzeit von wenigen Sekunden. N2 - A device was designed for the in situ monitoring of sintering of ceramic components using high-temperature laser triangulation. By simultaneous rotation of the sample and positioning of the laser distance sensor at the same time a three-dimensional detection of the topography of the sample surface could be achieved. Currently, flat samples with dimensions < 20 cm x 20 cm x 1 cm can be examined up to 1000 °C. The local repeatability precision of the laser sensor used is 10 µm at 20 °C and 15 µm at 1000 °C. The linear positioning accuracy of the sensor is 1 µm, the angular resolution of the rotation of the sample plate is 0.0025 °. Data for a 3D surface profile can be obtained in about 2 to 3 minutes. Specific line profiles can be received at a measurement time of a few seconds. PY - 2013 SN - 978-3-938595-00-8 VL - 135 IS - Kap. 6.3.1.0 PB - HvB-Verlag CY - Ellerau AN - OPUS4-28967 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -