TY - CONF A1 - Müller, Ralf T1 - Vacuum hot extraction: Detection of volatiles N2 - Der Vortrag gibt einen Überblick über die Möglichkete und Grenzen der Methode der Vakuum-Heiß-Extraktion an der BAM T2 - Seminar Instrumentelle Analytik, Fakultät III Prozesswissenschaften, Lehrstuhl Keramik TU Berlin CY - Berlin, Germany DA - 25.01.2019 KW - Heißgasextraktion KW - Glas PY - 2019 AN - OPUS4-50434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Reinsch, Stefan T1 - Dynamic Mechanical Analysis (DMA): Viscoelasticity N2 - Der Vortrag gibt einen Überblick über die am FB 56 der BAM betriebene Dynamisch-Mechanische Analyse mit dem Schwerpunkt auf Anwendungen für Glas N2 - The talk presents an overview over the method of Dynamic Mechanical Analysis used at the BAM division 5.6 Glass mainly focussed on glasses. T2 - Seminar Instrumentelle Analytik, Fakultät III Prozesswissenschaften, Lehrstuhl Keramik TU Berlin CY - Berlin, Germany DA - 25.01.2019 KW - Dynamisch Mechanische Analyse KW - Dynamic mechanical analysis KW - Glas PY - 2019 AN - OPUS4-50436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Balzer, R. A1 - Behrens, H. A1 - Schuth, S. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Fechtelkord, M. A1 - Deubener, J. T1 - The influence of H2O and SiO2 on the structure of silicoborate glasses JF - Journal of Non-Crystalline Solids N2 - To understand the impact of dissolved water on structure and properties, four boron-rich glasses of molar compositions 15-x Na2O x CaO 15 SiO2 70 B2O3 (with x=0, 7.5, 10) and 10 Na2O 15 SiO2 75 B2O3 were prepared and subsequently hydrated (up to 8 wt% H2O). Density measurements show a non-linear trend upon hydration implying large structural changes in particular at water contents<2 wt%. Near-infrared spectroscopy shows hydroxyl groups are the dominant species in all glasses upon the entire range of water content. Molecular H2O is detectable only at total water contents>2 wt%. 11B MAS NMR spectra show that the abundance of BO4 species is mainly controlled by ratio of (Na2O+CaO)/B2O3 while incorporation of water plays a minor role. Compared to borate glasses, the efficiency of formation of BO4 tetrahedra is favored by crosslinking of the network by SiO4-units. The glass transition temperatures, determined by differential thermal analysis, decreases continuously with water content due to breakage of B-O-B bonds by hydrolysis. However, compared to Silicates and aluminosilicates, the effect of dissolved water is less pronounced which can be explained by weaker B-O-B bonds in comparison to Si-O-Si bonds. KW - High pressure KW - Water speciation KW - Silicoborate glasses KW - Infrared spectroscopy KW - NMR spectroscopy PY - 2019 DO - https://doi.org/10.1016/j.jnoncrysol.2019.05.030 VL - 519 SP - 38 EP - 51 PB - Elsevier B.V. AN - OPUS4-48748 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kiefer, P. A1 - Balzer, R. A1 - Deubener, J. A1 - Behrens, H. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Density, elastic constants and indentation hardness of hydrous soda-lime silica glasses JF - Journal of Non-Crystalline Solids N2 - The effect of structural water on density, elastic constants and microhardness of water-bearing soda-lime-silica glasses of up to 21.5 mol% total water is studied. It is found that the Poisson ratio and the water content are positively correlated, while density and the elastic moduli decrease with increasing water content. Vickers hardness decreases by approximately 27% from the dry to the most hydrous glass. For water fractions <3 mol%, the dependencies are non-linear reflecting the non-linear change in the concentrations of OH and H2O molecules dissolved, whereas for water fractions >3 mol% linear dependencies are found. To distinguish the effect of structural water and environmental water, indentations were performed in toluene, nitrogen gas and air. Timedependent softening was evident for testing dry glasses in humid atmospheres as well as for tests of hydrous glasses in dry atmospheres. This indicates that the response times of dissolved water species are effectively equal in both scenarios. KW - Elastic constants KW - Soda-lime-silica KW - Glass KW - Water content KW - Microhardness PY - 2019 DO - https://doi.org/10.1016/j.jnoncrysol.2019.119480 SN - 0022-3093 SN - 1873-4812 VL - 521 SP - 119480 PB - Elsevier B.V. AN - OPUS4-48758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf A1 - Poologasundarampilai, G. A1 - Brauer, D. S. T1 - Sintering and concomitant crystallization of bioactive glasses JF - Journal of Applied Glass Science N2 - The sintering of bioactive glasses allows for the preparation of complex structures, such as three‐dimensional porous scaffolds. Such 3D constructs are particularly interesting for clinical applications of bioactive glasses in bone regeneration, as the scaffolds can act as a guide for in‐growing bone cells, allowing for good Integration with existing and newly formed tissue while the scaffold slowly degrades. Owing to the pronounced tendency of many bioactive glasses to crystallize upon heat treatment, 3D scaffolds have not been much exploited commercially. Here, we investigate the influence of crystallization on the sintering behavior of several bioactive glasses. In a series of mixed‐alkali glasses an increased CaO/alkali metal oxide Ratio improved sintering compared to Bioglass 45S5, where dense sintering was inhibited. Addition of small amounts of calcium fluoride helped to keep melting and sintering temperatures low. Unlike glass 13‐93, these new glasses crystallized during sintering but this did not prevent densification. Variation in bioactive glass particle size allowed for fine‐tuning the microporosity resulting from the sintering process. KW - Bioactive glass KW - Crystallization KW - Scaffolds KW - Sintering PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-485458 DO - https://doi.org/10.1111/ijag.13477 SN - 2041-1286 VL - 10 IS - 4 SP - 449 EP - 462 PB - Wiley AN - OPUS4-48545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Welter, T. A1 - Müller, Ralf A1 - Deubener, J. A1 - Marzok, Ulrich A1 - Reinsch, Stefan T1 - Hydrogen Permeation Through Glass JF - Frontiers in Materials N2 - Physical storage of gaseous hydrogen under high-pressure in glassy micro-containers such as spheres and capillaries is a promising concept for enhancing safety and the volumetric capacity of mobile hydrogen storage systems. As very low permeation through the container wall is required for storage of compressed hydrogen, development of glasses of minimal hydrogen permeability is needed. For this purpose, one has to understand better the dependence of hydrogen permeability on glass structure. The paper points out that minimizing the accessible free volume is as one strategy to minimize hydrogen permeability. Based on previously measured and comprehensive literature data, it is shown that permeation is independently controlled by ionic porosity and network modifier content. Thus, ionic porosity in modified and fully polymerized networks can be decreased equally to the lowest hydrogen permeability among the glasses under study. Applying this concept, a drop of up to 30,000 with respect to the permeation of hydrogen molecules through silica glass is attainable. KW - Ionic porosity KW - hydrogen storage KW - Glass KW - Permeability KW - Solubility KW - Diffusivity PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513927 DO - https://doi.org/10.3389/fmats.2019.00342 VL - 6 SP - Article 342 AN - OPUS4-51392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Ralf A1 - Waurischk, Tina A1 - Behrens, H. A1 - Deubener, J. T1 - Crack growth in borate and silicate glasses: Stress-corrosion susceptibility and hydrolytic resistance JF - Journal of Non-Crystalline Solids N2 - A double cantilever beam technique in air equipped with ultrasound modulation was used to measure the crack velocity v in borate and silicate glasses. In all glasses v and the stress intensity KI followed the empirical correlation v ~ KIn. Indicated by its smallest KI at v = 1 μm s − 1, KI* = 0.27 MPa m0.5, the silicoborate glass containing 70 mol% B2O3 was found most susceptible to stress-corrosion enhanced crack growth. Contrarily, the sodium calcium magnesium silicate glass appeared least susceptible with KI* = 0.57 MPa m0.5. No clear correlation is evident between KI*, reflecting the stress-corrosion susceptibility, and the hydrolytic resistance for all glasses under study, but values of n obtained from the present study and taken from previous literature for 35 glasses tend to decrease with increasing network modifier ion fraction. Energy dissipation during stress-corrosion enhanced crack propagation is assumed to cause this trend. KW - DCB KW - Alkali and alkaline earth silicate and borate glass KW - Crack growth in air KW - Stress-corrosion KW - Stress intensity PY - 2021 DO - https://doi.org/10.1016/j.jnoncrysol.2020.120414 VL - 551 SP - 120414 PB - Elsevier B.V. AN - OPUS4-51393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Müller, Ralf A1 - Balzer, R. A1 - Kiefer, P. A1 - Reinsch, Stefan A1 - Behrens, H. A1 - Deubener, J. T1 - Subcritical crack growth in hydrous soda-lime silicate glass N2 - Glass strength and fatigue is limited by surface cracks. As subcritical crack growth (SCCG) is governed by ambient humidity, stress corrosion at the crack tip is widely accepted to be the underlying mechanism. However, as water is known to have decisive effect on glass properties and can rapidly enter the crack tip near glass region, SCCG could be affected by such water related phenomena. We tried to mimic these effects studying water dissolution and speciation, mechanical properties, and SCCG in water-bearing glasses. For this purpose, glasses up to 8 wt% water have been prepared by means of high-pressure melting of glass powder - water mixtures. As part of this effort, SCCG in dry and hydrous commercial micros¬cope slide glass (CW = 6 wt%) was studied in double cantilever beam (DCB) geometry and sub-Tg relaxation was measured by Dynamic Mechanical Analysis (DMA). For SCCG in ambient air (24% r.h.), SCCG was promoted by the presence of 6wt% bulk water with respect to the dry glass. On the other hand, stress intensity values, KI, required to cause slow crack growth (v < 10-6 ms-1) resemble literature findings for float glass of similar composition in liquid water, which might represent the maximum possible promoting effect of ambient water on SCCG. For SCCG in vacuum (10-3 mbar), dissolved bulk water causes even more pronounced effects. Most strikingly, it strongly decreases the slope of the log v(KI)-curve, which is a measure of dissipated energy during fracture. A strong increase of sub-Tg relaxation with increasing water content was confirmed by DMA. As a consequence, slow crack growth occurs at KI values as measured in the dry glass whereas fast crack growth occurs at much larger KI than that of the dry glass. Kinks and shoulders shown by the inert log v(KI)-curve indicate that bulk water does not simply affect bulk mechanical properties. T2 - 9th Otto Schott Colloquium CY - Jena, Germany DA - 09.09.2019 KW - Internal friction KW - Soda-lime silicate glass KW - Crack growth KW - Water content KW - DCB PY - 2019 AN - OPUS4-49534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Akatsuka, C. A1 - Honma, T. A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - Tanaka, S. A1 - Komatsu, T. T1 - Surface crystallization and gas bubble formation during conventional heat treatment in Na2MnP2O7 glass JF - Journal of Non-Crystalline Solids N2 - The crystallization behavior of sodium ion conductive Na2MnP2O7 glass was examined to clarify the crystallization mechanism. The formation of thermodynamically metastable phase, layered Na2MnP2O7, at the surface of the glass occurred. Heat treatment at 430 °C for 3 h lead to surface crystals of Na2MnP2O7 oriented with the (101) direction perpendicular to the sample surface. As the heat treatment temperature increased, the glass-ceramic samples deformed, and the presence numerous micro bubbles due to dissolved water was detected. KW - Glass-ceramic KW - Crystallization KW - Sodium ion batteries KW - Bubble formation KW - Phosphate PY - 2019 DO - https://doi.org/10.1016/j.jnoncrysol.2019.01.030 VL - 510 SP - 36 EP - 41 PB - Elsevier B.V. AN - OPUS4-49618 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Gaber, M. T1 - VACUUM HOT EXTRACTION (VHE-MS): Concentration, diffusion and degassing of volatiles N2 - Der Vortrag gibt eine Einführung in die Methode der Vakuumheißextraktion und beschreibt die Anwendungsmöglichkeiten der an der BAMN betriebenen Anlage. T2 - Seminar Instrumentelle Analytik, Fakultät III Prozesswissenschaften, Lehrstuhl Keramik TU Berlin CY - TU Berlin, Germany DA - 26.1.2018 KW - Gasabgabe KW - Diffusion KW - Gasgehalt PY - 2018 AN - OPUS4-45665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -