TY - JOUR A1 - Deubener, J. A1 - Behrens, H. A1 - Müller, Ralf T1 - An overview on the effect of dissolved water on the viscosity of soda lime silicate melts JF - Journal of Non-Crystalline Solids: X N2 - In this review article, the impact of dissolved water on the viscous properties of soda lime silicate melts is addressed against the background of the upcoming switch from natural gas to hydrogen combustion. This change will lead to an increase in the total water content of the glasses by up to 0.4 mol%. In order to better define possible influences of water speciation, water-rich glasses were synthesised under increasing pressure up to the kbar range. It is shown that a distinction must be made between the influence of dissolved OH-groups and H2Omolecules in order to accurately reflect the dependence of isokom temperatures on water content. In addition, an increase of one order of magnitude in the tolerance to higher deformation rates was observed for the range of expected increased water contents during isothermal deformation processes, which is based on the timetemperature superposition principle, i.e. congruent flow curves were determined under isokomal conditions. KW - Water in glass KW - Viscosity KW - Soda lime silicate glass KW - Shear thinning KW - Nydrogen melting PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587276 DO - https://doi.org/10.1016/j.nocx.2023.100195 VL - 19 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-58727 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kiefer, P. A1 - Maiwald, M. A1 - Deubener, J. A1 - Balzer, R. A1 - Behrens, H. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Automated Analysis of Slow Crack Growth in Hydrous Soda-Lime Silicate Glasses JF - Frontiers in Materials N2 - To explore the impact of ambient and structural water on static fatigue, the initiation and growth of 3279 Vickers induced median radial cracks were automatically recorded and analyzed. We find that humidity is more efficient in initiating cracks and promoting their growth than water, which is dissolved in the glass structure. In particular for slow crack growth (< 3x10-6 m s-1), tests in dry nitrogen showed a considerable decrease in the crack growth exponent with increasing water content of the glasses. On the other hand, if tests were performed in humid air, the crack growth exponent was independent of the water content of the hydrous glasses, while stress intensity decreased slightly. These observations indicate that water promotes the processes at the crack-tip regardless of its origin. However, ambient water is more efficient. KW - Indentation fracture toughness KW - Slow crack growth KW - Automated analysis KW - Hydrous glass KW - Vickers indentation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513085 DO - https://doi.org/10.3389/fmats.2020.00268 VL - 7 SP - 268 AN - OPUS4-51308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kotaka, M. A1 - Honma, T. A1 - Komatsu, T. A1 - Shinozaki, K. A1 - Affatigato, M. A1 - Müller, Ralf T1 - Control of self-powdering phenomenon in ferroelastic β′-Gd2(MoO4)3 crystallization in boro-tellurite glasses JF - Journal of Non-Crystalline Solids N2 - Glasses with compositions of 21Gd2O3-63MoO3-(16-x)B2O3-xTeO2 (mol%) (x= 0, 2, 4, 8) were prepared using a conventional melt quenching technique, and the crystallization behavior of ferroelastic β′-Gd2 MoO4)3 Crystals was examined to clarify the mechanism of self-powdering phenomenon and to design bulk crystallized glasses. It was found that the self-powdering phenomenon appeared significantly during the crystallization at temperatures near the crystallization peak temperature, but the phenomenon is suppressed in the crystallization at temperatures much higher than the glass transition temperature. It was also found that the substitution of TeO2 for B2O3 in the base glasses suppresses the self-powdering phenomenon and consequently bulk crystallized glasses were obtained in the glass with x=8 mol%. The densities at room temperature of the base glasses are d =4.755–4.906 g/cm3, being much higher than the value of d=4.555 g/cm3 for β′-Gd2(MoO4)3 crystal. It is proposed that the stresses in the inside of crystals induced by large density differences (i.e., large molar volume differences) between the glassy phase and crystals might be relaxed effectively in the glasses containing TeO2 with weak TeeO bonds and fragile character. KW - Glass crystallization stress PY - 2018 DO - https://doi.org/10.1016/j.jnoncrysol.2017.12.006 SN - 0022-3093 SN - 1873-4812 VL - 501 SP - 85 EP - 92 PB - Elsevier B.V. AN - OPUS4-46472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Moraes, Flavia A1 - Müller, Wolfgang A1 - Frischat, G.H. A1 - Müller, Ralf T1 - Corrosion and crystallization at the inner surfaces of glass bricks JF - Journal of non-crystalline solids N2 - Glass bricks are important transparent building materials. They are produced by joining two halves of glass pressings at 600–700 °C. During this production process alkali oxides evaporate and are redeposited at the cooler inner front surfaces of the bricks. This surface layer reacts with H2O and CO2 from the residual brick atmosphere, leading to the formation of an alkali-rich silicate-hydrate layer of ≥50 nm thickness, which could be evidenced leading to a reduced nano-hardness of similar thickness, and from which NaHCO3 crystals can finally grow. Climate chamber experiments (repeated cooling between at -8 and -14 °C and reheating to 0 to 15 °C) resulted in reversible NaHCO3 crystallization and redissolution, presumably influenced by water evaporation or condensation and driven by the NaHCO3 supersaturation of the silicate-hydrate layer. Depending on the time–temperature schedule, different crystal morphologies became visible in this closed system, e.g. isolated spherical crystals, crystals arranged in chains and in double-chains, respectively, which can limit already the transmittance of the glass bricks. When a crack occurs or the brick is opened, the hygroscopic NaHCO3 crystals take up more H2O from the ambient, react irreversibly with the glass surface, finally leading to a total loss of transmittance. KW - Chemical properties KW - Chemical durability KW - Corrosion KW - Crystallization KW - Crystal growth KW - Nucleation KW - Glasses KW - Mass spectroscopy KW - Mechanical properties KW - Hardness KW - Indentation KW - Microindentation KW - Microscopy KW - Optical microscopy KW - Scanning electron microscopy KW - Optical properties KW - Optical spectroscopy KW - Oxide glasses KW - Alkali silicates KW - Soda-lime-silica KW - Surfaces and interfaces PY - 2008 DO - https://doi.org/10.1016/j.jnoncrysol.2007.07.086 SN - 0022-3093 VL - 354 IS - 2-9 SP - 284 EP - 289 PB - North-Holland Publ. Co. CY - Amsterdam AN - OPUS4-16433 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Ralf A1 - Waurischk, Tina A1 - Behrens, H. A1 - Deubener, J. T1 - Crack growth in borate and silicate glasses: Stress-corrosion susceptibility and hydrolytic resistance JF - Journal of Non-Crystalline Solids N2 - A double cantilever beam technique in air equipped with ultrasound modulation was used to measure the crack velocity v in borate and silicate glasses. In all glasses v and the stress intensity KI followed the empirical correlation v ~ KIn. Indicated by its smallest KI at v = 1 μm s − 1, KI* = 0.27 MPa m0.5, the silicoborate glass containing 70 mol% B2O3 was found most susceptible to stress-corrosion enhanced crack growth. Contrarily, the sodium calcium magnesium silicate glass appeared least susceptible with KI* = 0.57 MPa m0.5. No clear correlation is evident between KI*, reflecting the stress-corrosion susceptibility, and the hydrolytic resistance for all glasses under study, but values of n obtained from the present study and taken from previous literature for 35 glasses tend to decrease with increasing network modifier ion fraction. Energy dissipation during stress-corrosion enhanced crack propagation is assumed to cause this trend. KW - DCB KW - Alkali and alkaline earth silicate and borate glass KW - Crack growth in air KW - Stress-corrosion KW - Stress intensity PY - 2021 DO - https://doi.org/10.1016/j.jnoncrysol.2020.120414 VL - 551 SP - 120414 PB - Elsevier B.V. AN - OPUS4-51393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waurischk, Tina A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - Kiefer, P. A1 - Deubener, J. A1 - Balzer, R. A1 - Behrens, H. T1 - Crack Growth in Hydrous Soda-Lime Silicate Glass JF - Frontiers in Materials N2 - Stable crack growth was measured for nominal dry and water-bearing (6 wt%) soda-lime silicate glasses in double cantilever beam geometry and combined with DMA studies on the effects of dissolved water on internal friction and glass transition, respectively. In vacuum, a decreased slope of logarithmic crack growth velocity versus stress intensity factor is evident for the hydrous glass in line with an increase of b-relaxation intensity indicating more energy Dissipation during fracture. Further, inert crack growth in hydrous glass is found to be divided into sections of different slope, which indicates different water related crack propagation mechanism. In ambient air, a largely extended region II is observed for the hydrous glass, which indicates that crack growth is more sensitive to ambient water. KW - Internal friction KW - Soda-lime silicate glass KW - Water content KW - Stable crack growth KW - DCB geometry KW - Stress intensity factor PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506829 DO - https://doi.org/10.3389/fmats.2020.00066 VL - 7 SP - Articel 66 AN - OPUS4-50682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reinsch, Stefan A1 - Nascimento, M.L.F. A1 - Müller, Ralf A1 - Zanotto, E. D. T1 - Crystal growth kinetics in cordierite and diopside glasses in wide temperature ranges JF - Journal of non-crystalline solids N2 - We measured and collected literature data for the crystal growth rate, u(T), of µ-cordierite (2MgO · 2Al2O3 · 5SiO2) and diopside (CaO · MgO · 2SiO2) in their isochemical glass forming melts. The data cover exceptionally wide temperature ranges, i.e. 800–1350 °C for cordierite and 750–1378 °C for diopside. The maximum of u(T) occurs at about 1250 °C for both systems. A smooth shoulder is observed around 970 °C for µ-cordierite. Based on measured and collected viscosity data, we fitted u(T) using standard crystal growth models. For diopside, the experimental u(T) fits well to the 2D surface nucleation model and also to the screw dislocation growth mechanism. However, the screw dislocation model yields parameters of more significant physical meaning. For cordierite, these two models also describe the experimental growth rates. However, the best fittings of u(T) including the observed shoulder, were attained for a combined mechanism, assuming that the melt/crystal interface growing from screw dislocations is additionally roughened by superimposed 2D surface nucleation at large undercoolings, starting at a temperature around the shoulder. The good fittings indicate that viscosity can be used to assess the transport mechanism that determines crystal growth in these two systems, from the melting point Tm down to about Tg, with no sign of a breakdown of the Stokes–Einstein/Eyring equation. KW - Crystal growth KW - Oxide glasses KW - Silicates KW - Kristallwachstumsgeschwindigkeit KW - Kinetik KW - Silikatgläser PY - 2008 DO - https://doi.org/10.1016/j.jnoncrysol.2008.09.007 SN - 0022-3093 VL - 354 IS - 52-54 SP - 5386 EP - 5394 PB - North-Holland Publ. Co. CY - Amsterdam AN - OPUS4-18383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nagamine, K. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Honma, T. A1 - Komatsu, T. T1 - Crystallization behavior of lithium iron phosphate glass powders in different atmospheres JF - Journal of the American ceramic society N2 - Crystallization behavior in different atmospheres (air, Ar, and 7% H2/Ar) of lithium iron phosphate glass (33Li2O–33Fe2O3–1Nb2O5–33P2O5 (LFNP)) powders with different sizes of 2–1000 µm was examined. The crystallization peak temperature (Tp) in Ar and 7% H2/Ar decreased with decreasing the particle size of glass powders, but the value of Tp in air was independent of particle size. The crystallized glass obtained by heating to Tp showed the formation of the α-Li3Fe2(PO4)3 and LiFePO4 crystalline phases. Fe2O3 crystals were formed only in the inside of crystallized glass plates in the heating in air. The crystallization of LiFePO4 was largely enhanced in the particle size of <2 µm during the heating in Ar and 7% H2/Ar atmospheres. The main crystallization mechanism in LFNP glass was found to be surface crystallization. Significant shrinkages were observed for glass compacts (pellets) in the heating in 7% H2/Ar. These results suggest that controlling particle sizes and atmospheres enables the design the morphology of LiFePO4 crystals in LFNP glass. KW - DTA KW - Kristallisation KW - Phasenentwicklung KW - Unterschiedliche Atmosphären KW - Lithiumionen-Batterie PY - 2011 DO - https://doi.org/10.1111/j.1551-2916.2011.04579.x SN - 0002-7820 SN - 1551-2916 VL - 94 IS - 9 SP - 2890 EP - 2895 PB - Blackwell Publishing CY - Malden AN - OPUS4-24914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kiefer, P. A1 - Balzer, R. A1 - Deubener, J. A1 - Behrens, H. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Density, elastic constants and indentation hardness of hydrous soda-lime silica glasses JF - Journal of Non-Crystalline Solids N2 - The effect of structural water on density, elastic constants and microhardness of water-bearing soda-lime-silica glasses of up to 21.5 mol% total water is studied. It is found that the Poisson ratio and the water content are positively correlated, while density and the elastic moduli decrease with increasing water content. Vickers hardness decreases by approximately 27% from the dry to the most hydrous glass. For water fractions <3 mol%, the dependencies are non-linear reflecting the non-linear change in the concentrations of OH and H2O molecules dissolved, whereas for water fractions >3 mol% linear dependencies are found. To distinguish the effect of structural water and environmental water, indentations were performed in toluene, nitrogen gas and air. Timedependent softening was evident for testing dry glasses in humid atmospheres as well as for tests of hydrous glasses in dry atmospheres. This indicates that the response times of dissolved water species are effectively equal in both scenarios. KW - Elastic constants KW - Soda-lime-silica KW - Glass KW - Water content KW - Microhardness PY - 2019 DO - https://doi.org/10.1016/j.jnoncrysol.2019.119480 SN - 0022-3093 SN - 1873-4812 VL - 521 SP - 119480 PB - Elsevier B.V. AN - OPUS4-48758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Ralf A1 - Meszaros, Robert A1 - Peplinski, Burkhard A1 - Reinsch, Stefan A1 - Eberstein, Markus A1 - Schiller, Wolfgang Arno A1 - Deubener, J. T1 - Dissolution of alumina, sintering, and crystallization in glass ceramic composites for LTCC JF - Journal of the American ceramic society KW - LTCC KW - Sintering KW - Crystallization KW - Alumina dissolution KW - Rietveld analysis PY - 2009 DO - https://doi.org/10.1111/j.1551-2916.2009.03089.x SN - 0002-7820 SN - 1551-2916 VL - 92 IS - 8 SP - 1703 EP - 1708 PB - Blackwell Publishing CY - Malden AN - OPUS4-20676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Ralf A1 - Eberstein, Markus A1 - Reinsch, Stefan A1 - Schiller, Wolfgang Arno A1 - Deubener, J. A1 - Thiel, A. T1 - Effect of rigid inclusions on sintering of low temperature co-fired ceramics JF - European journal of glass science and technology / B KW - Sintering KW - Glass Matrix Composites KW - Rigid Inclusion KW - Effective Viscosity KW - Kinetic Modelling KW - LTCC PY - 2007 SN - 1753-3562 SN - 0017-1050 SN - 0031-9090 SN - 1750-6697 VL - 48 IS - 4 SP - 259 EP - 266 PB - Society of Glass Technology CY - Sheffield AN - OPUS4-16211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - Eberstein, Markus A1 - Deubener, J. A1 - Thiel, A. A1 - Schiller, Wolfgang Arno T1 - Effects of dispersed Al2O3 particles on sintering of LTCC JF - Advanced materials research N2 - The sintering of Low Temperature Co-fired Ceramics prepared from alumoborosilicate glass- and Al2O3 powders of similar small particle size was studied by dilatometry, heating microscopy, microstructure analysis, glass- and effective viscosity measurements. The steric effect of Al3O3 inclusions was studied using a gnon-reactiveh model composite. With increasing Al3O3 volume fraction (Φ ≤ 0.45), sintering decelerates and its final stage shifts to higher temperature. The attainable shrinkage is reduced as Al2O3 particle clusters bearing residual pores become more frequent. The kinetics of sintering could be described formally superposing the weighed contributions of differentially sized and randomly composed glass-crystal particle clusters and assuming a sintering rate controlled by the effective matrix viscosity, which increases with Φ and with progressive wetting of Al2O3 particles during densification. The "reactive" model composite shows significant dissolution of Al2O3 into the glass, which has two opposed effects on sintering: reducing Φ and increasing glass viscosity. For the present case (Φ = 0.25), the latter effect dominates and sintering is retarded by Al2O3 dissolution. Crystallization of wollastonite starts after full densification. Dissolution of Al2O3 was found to promote the subsequent growth of anorthite. KW - LTCC KW - Glass matrix composites KW - Al2O3-inclusions KW - Sintering kinetics PY - 2005 SN - 1022-6680 SN - 1662-8985 VL - 39-40 SP - 375 EP - 380 PB - Trans Tech Publ. CY - Zurich AN - OPUS4-18441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unger, Brita A1 - Rurack, Knut A1 - Müller, Ralf A1 - Resch-Genger, Ute A1 - Buttke, K. T1 - Effects of the Sol-Gel Processing on the Fluorescence Properties of Laser Dyes in Tetraethoxysilane Derived Matrices JF - Journal of sol gel science and technology N2 - Two fluorescent dyes were incorporated into sol-gel derived SiO2 matrices. The dye was added to SiO2 precursors of different degrees of pre-condensation and the spectroscopic properties of the immobilized dye were measured at various aging and drying stages of the resulting gels. The significant influence of the processing parameters on the spectroscopic properties is manifested in the relative intensity of a second red shifted emission band (550–560 nm), which was observed besides the typical coumarin emission band (495 nm). The appearance of this long wavelength emission might be attributed to dye aggregation or to other reactions with the ambient matrix forced by micro porosity phenomena. KW - Sol-gel KW - Precursor chemistry KW - Fluorescence properties KW - Optical solids PY - 2000 DO - https://doi.org/10.1023/A:1008768318418 SN - 0928-0707 SN - 1573-4846 VL - 19 SP - 799 EP - 802 PB - Kluwer Academic Publ. CY - Dordrecht AN - OPUS4-1080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peplinski, Burkhard A1 - Adam, Christian A1 - Adamczyk, Burkart A1 - Müller, Ralf A1 - Schadrack, Reinhard A1 - Michaelis, Matthias A1 - Emmerling, Franziska A1 - Reuther, H. A1 - Menzel, Michael T1 - Evidence of formation of the tridymite form of AlPO4 in some municipal sewage sludge ashes JF - Powder diffraction N2 - Evidence is provided that the tridymite component observed in the X-ray diffraction patterns of some sewage sludge ashes (SSAs) should not be interpreted as the tridymite modification of SiO2 but as the tridymite form of AlPO4. This proof is based on a combined X-ray Powder Diffraction (XRD), X-ray fluorescence (XRF) and Mossbauer spectroscopy investigation of two SSAs produced at two fluidized bed incineration facilities, located in different municipalities and operated differently. The structural and chemical characterization was carried out on the 'as received' SSA samples as well as on the residues of these two SSAs pretreated by leaching in citric acid. In addition, direct proof is presented that the tridymite form of AlPO4 does crystallize from X-ray amorphous precursors under conditions that mimic the huge heating rate and short retention time (just seconds at T ≈ 850 °C) typical for fluidized bed incinerators. KW - Aluminium phosphate KW - Ash KW - Fly ash KW - Incinerator ash KW - Sewage sludge ash KW - Tridymite form PY - 2013 DO - https://doi.org/10.1017/S0885715613000869 SN - 0885-7156 VL - 28 IS - S2 SP - S425 EP - S435 PB - JCPDS CY - Swarthmore, Pa. AN - OPUS4-29703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Ralf A1 - Behrens, Harald A1 - Ageo-Blanco, Boris A1 - Reinsch, Stefan A1 - Wirth, Thomas T1 - Foaming Species and Trapping Mechanisms in Barium Silicate Glass Sealants JF - Advanced Engineering Materials N2 - Barium silicate glass powders 4 h milled in CO2 and Ar and sintered in air are studied with microscopy, total carbon analysis, differential thermal Analysis (DTA), vacuum hot extraction mass spectroscopy (VHE-MS), Fourier-transformed infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary-ion mass spectrometry (TOF-SIMS). Intensive foaming of powder compacts is evident, and VHE studies prove that foaming is predominantly caused by carbonaceous species for both milling gases. DTA Shows that the decomposition of BaCO3 particles mix-milled with glass powders occurs at similar temperatures as foaming of compacts. However, no carbonate at the glass surface could be detected by FTIR spectroscopy, XPS, and TOF-SIMS after heating to the temperature of sintering. Instead, CO2 molecules unable to rotate identified by FTIR spectroscopy after milling, probably trapped by mechanical dissolution into the glass bulk. Such a mechanism or microencapsulation in cracks and particle aggregates can explain the contribution of Ar to foaming after intense milling in Ar atmosphere. The amount of CO2 molecules and Ar, however, cannot fully explain the extent of foaming. Carbonates mechanically dissolved beneath the surface or encapsulated in cracks and micropores of particle aggregates are therefore probably the major foaming source. KW - Milling KW - Foaming KW - Glass powder KW - Sintering PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531227 DO - https://doi.org/10.1002/adem.202100445 SN - 1438-1656 VL - 24 IS - 6 SP - 2100445-1 EP - 2100445-13 AN - OPUS4-53122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zietka, S. A1 - Deubener, J. A1 - Behrens, H. A1 - Müller, Ralf T1 - Glass transition and viscosity of hydrated silica glasses JF - European journal of glass science and technology / B N2 - The viscosity of silica glasses with different water contents was measured by penetration of sapphire microspheres in the range from 1012-1014·7 Pas at ambient pressure. Commercial silica glasses were used together with hydrous silica glasses, which were prepared by melting glass powder plus water in an internally heated pressure vessel at 2-3 kbar and 1350-1450°C. The temperature dependence of the viscosity of silica glasses with total water contents Cw of 5·4×10-4, 7·0×10-4, 1·00×10-2, and 1·55×10-2(Cw in mass fractions) can be described by Arrhenius equations. From the results, the linear dependence of the T12 isokom (K) with the logarithm of the water content was determined as T12=192-409 logCw. The analysis of the compositional dependence of the T12 isokom in the H2O-Na2O-SiO2 system reveals a temperature depression of up to 200 K for mixed water- and sodium-bearing glasses compared to H2O-SiO2 and Na2O-SiO2 glasses with same molar silica content. From these findings we conclude that protons may contribute significantly to the mixed alkali effect in glasses. KW - Wassergehalt KW - Silicatgläser KW - Viskosität PY - 2007 SN - 1753-3562 SN - 0017-1050 SN - 0031-9090 SN - 1750-6697 VL - 48 IS - 6 SP - 380 EP - 387 PB - Society of Glass Technology CY - Sheffield AN - OPUS4-18396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eichelbaum, M. A1 - Rademann, K. A1 - Weigel, W. A1 - Löchel, B. A1 - Radtke, Martin A1 - Müller, Ralf T1 - Gold-Ruby Glass in a New Light: On the Microstructuring of Optical Glasses with Synchrotron Radiation JF - Gold Bulletin KW - Nanoparticles KW - Glasses KW - Synchrotron radiation KW - X-ray lithography KW - Surface plasmon resonance KW - Luminescence PY - 2007 SN - 0017-1557 VL - 40 IS - 4 SP - 1 EP - 5 CY - London AN - OPUS4-16432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marzok, Ulrich A1 - Müller, Ralf A1 - Schadrack, Reinhard A1 - Krauhausen, M. A1 - Burgstedt, F. A1 - Brode, W. A1 - Reetz, R. T1 - High-temperature laser profilometry for ceramic tapes JF - Ceramic Forum International : cfi N2 - Advanced ceramics are promising key components for microsystems engineering, communication Technology and medical engineering. Driven by steadiiy increasing demands on dimensional accuracy of components and Integration density, sintering has to be controlled at an unprecedented degree of precision. Being most crucial for components of complex shape, graded or heterogeneous-composed parts like LTCC multilayers for microsystems, precise control of sintering has a decisive influence on the dimensional accuracy, mechanical integrity and reliability of sintered components. Thus, permanent or temporary shape distortions or warping during sintering may result from spatially heterogeneous microstructure and temperature distribution, e.g. during the co-firing process of green multilayer Stacks printed with metallization and other functional pastes. Whereas permanent warping can be easily measured after sintering, temporary warping during firing is more difficult to measure. Nonetheless, this effect may cause latent failures later, which often limit the applicability of ceramic components. PY - 2013 SN - 0173-9913 SN - 0196-6219 VL - 90 IS - 4 SP - E35 EP - E40 PB - Göller CY - Baden-Baden AN - OPUS4-28500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marzok, Ulrich A1 - Müller, Ralf A1 - Schadrack, Reinhard A1 - Krauhausen, M. A1 - Burgstedt, F. A1 - Brode, W. A1 - Reetz, R. T1 - Hochtemperatur-Laserprofilometrie an keramischen Bauteilen JF - Ceramic Forum International : cfi N2 - Hochleistungssinterwerkstoffe spielen eine wachsende Rolle in derzeitigen Schlüsseltechnologien wie der Mikrosystem-, Informations-, Kommunikations- und Medizintechnik. Dabei steigen die Anforderungen an die präzise Steuerung der Sinterung. Besonders für komplexe, gradierte oder heterogen zusammengesetzte Formkörper wie zum Beispiel keramische LTCC-Multilayer für die Mikrosystemtechnik hat die exakte Beherrschung dieses Prozessschrittes wesentlichen Einfluss auf die Maßhaltigkeit, mechanische Integrität und Zuverlässigkeit der gesinterten Bauteile. Bedingt durch die Heterogenität der mehrlagigen und mit Leit- und anderen Funktionspasten bedruckten Sinterkörper hinsichtlich ihrer sinterphysikalischen oder thermischen Eigenschaften können bleibende oder temporäre Verwerfungen beim Schrumpfungsprozess auftreten, wobei letztere unter Umständen Ursache latenter Fehler im späteren Bauteil sind. PY - 2013 SN - 0173-9913 SN - 0196-6219 VL - 90 IS - 3 SP - D19 EP - D24 PB - Göller CY - Baden-Baden AN - OPUS4-28013 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Welter, T. A1 - Marzok, Ulrich A1 - Deubener, J. A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Hydrogen diffusivity in sodium aluminosilicate glasses JF - Journal of Non-Crystalline Solids N2 - Hydrogen gas diffusivity of fourteen glasses of the Na2O-Al2O3-SiO2 system are studied along the joins quartzalbite-jadeite-nepheline (Qz-Ab-Jd-Np, fully polymerized) and albite-sodium disilicate (Ab-Ds, depolymerized). Density measurements show that ionic porosity decreases from 54.4% (Qz) to 51.5% (Np) and from 52.4% (Ab) to 50.2% (Ds). Hydrogen diffusivity D follows similar trends but at another scale. D at 523 K decreases from 4×10−12 to 3×10−14m2 s−1 (Qz-Np) and from 4×10−13 to 3×10−15m2 s−1 (Ab-Ds). Charge compensating Na+ acting as a filling agent in fully polymerized network structures leads to up to one order of Magnitude higher diffusivities as depolymerized glass structures of the same SiO2 content where Na+ takes the role of a modifier ion. Temperature dependence of the diffusivity indicates that both the activation energy involved with the moving H2 molecule as well as the accessible volume in the structure contribute to this compositional trend. KW - Aluminosilicate glasses KW - Hydrogen diffusivity KW - Ionic porosity PY - 2019 DO - https://doi.org/10.1016/j.jnoncrysol.2019.119502 VL - 521 SP - 119502 PB - Elsevier B.V. AN - OPUS4-50392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -