TY - JOUR A1 - Ried, Peter A1 - Gaber, Martin A1 - Müller, Ralf A1 - Deubener, J. T1 - Hydrogen permeability of a barium-aluminoborosilicate glass - A methodical approach N2 - The H2 effusion from H2 saturated glass powders, H2 permeation through the wall of blown glass bulbs, and H2 permeation through the wall of glass capillaries were applied to evaluate the permeability of hydrogen gas in a barium-aluminoborosilicate (BABS) glass. To validate these methods, two commercial glasses (vitreous silica and borosilicate) were used as a reference. Permeation values obtained from the different experiments agreed within a factor of 3 or less. The H2 permeability of BABS glass at temperatures close to ambient was found to be at least 3 orders of magnitude below that of borosilicate and silica glasses. The powder method, which requires minimal sample preparation efforts, turned out to provide easy access to the measurement of H2 permeability of glasses down to P = 3.9 × 10- 21 mol s- 1 Pa- 1 m- 1. KW - Hydrogen gas KW - Permeability KW - Solubility KW - Diffusivity KW - Aluminoborosilicate glass PY - 2014 U6 - https://doi.org/10.1016/j.jnoncrysol.2014.04.006 SN - 0022-3093 VL - 394-395 SP - 43 EP - 49 PB - North-Holland Publ. Co. CY - Amsterdam AN - OPUS4-30720 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -