TY - JOUR A1 - Wolf, S. E. A1 - Müller, L. A1 - Barrea, R. A1 - Kampf, C.J. A1 - Leiterer, Jork A1 - Panne, Ulrich A1 - Hoffmann, T. A1 - Emmerling, Franziska A1 - Tremel, W. T1 - Carbonate-coordinated metal complexes precede the formation of liquid amorphous mineral emulsions of divalent metal carbonates N2 - During the mineralisation of metal carbonates MCO3 (M = Ca, Sr, Ba, Mn, Cd, Pb) liquid-like amorphous intermediates emerge. These intermediates that form via a liquid/liquid phase separation behave like a classical emulsion and are stabilized electrostatically. The occurrence of these intermediates is attributed to the formation of highly hydrated networks whose stability is mainly based on weak interactions and the variability of the metal-containing pre-critical clusters. Their existence and compositional freedom are evidenced by electrospray ionization mass spectrometry (ESI-MS). Liquid intermediates in non-classical crystallisation pathways seem to be more common than assumed. PY - 2011 U6 - https://doi.org/10.1039/c0nr00761g SN - 2040-3364 SN - 2040-3372 IS - 3 SP - 1158 EP - 1165 PB - RSC Publ. CY - Cambridge AN - OPUS4-23355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Theiner, S. A1 - Löhr, Konrad A1 - Köllensperger, G. A1 - Müller, L. A1 - Jakubowski, Norbert T1 - Single-cell analysis by use of ICP-MS N2 - This tutorial review article is highlighting the fundamentals, instrumentation, and most recent trends of single-cell analysis by use of inductively coupled plasma-mass spectrometry (ICP-MS). It is shown that metals and hetero-elements being intrinsically present in cells, taken up by cells (for instance engineered metallic nanoparticles) or binding to a cell can be detected qualitatively by existing ICP-MS Technologies on a single cell level. Adding a quantitative dimension to single-cell analysis by (laser ablation-) ICP-MS requires dedicated calibration and validation strategies, which are currently being established and are being critically discussed. In a tutorial part, the ICP-MS instruments, the measurement conditions, and the sample introduction and preparation techniques are introduced. The application section focuses on the state-of-the-art of single-cell analysis in suspension, using laser ablation or (imaging) mass cytometry. Finally, future trends are critically assessed. KW - Cell KW - ICP KW - ICP-MS KW - Laser ablation PY - 2020 U6 - https://doi.org/10.1039/d0ja00194e SN - 0267-9477 VL - 35 IS - 9 SP - 1784 EP - 1813 PB - The Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-51448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, L. A1 - Traub, Heike A1 - Jakubowski, Norbert T1 - Novel applications of lanthanoides as analytical or diagnostic tools in the life sciences by ICP-MS-based techniques N2 - Inductively coupled plasma mass spectrometry (ICP-MS) is a well-established analytical method for multi-elemental analysis in particular for elements at trace and ultra-trace levels. It has found acceptance in various application areas during the last decade. ICP-MS is also more and more applied for detection in the life sciences. For these applications, ICP-MS excels by a high sensitivity, which is independent of the molecular structure of the analyte, a wide linear dynamic range and by excellent multi-element capabilities. Furthermore, methods based on ICP-MS offer simple quantification concepts, for which usually (liquid) standards are applied, low matrix effects compared to other conventional bioanalytical techniques, and relative limits of detection (LODs) in the low pg g−1 range and absolute LODs down to the attomol range. In this chapter, we focus on new applications where the multi-element capability of ICP-MS is used for detection of lanthanoides or rare earth elements, which are applied as elemental stains or tags of biomolecules and in particular of antibodies. KW - ICP-MS KW - Life sciences KW - Mass cytometry KW - Laser ablation (LA)-ICP-MS KW - Bioimaging PY - 2016 U6 - https://doi.org/10.1515/psr-2016-0064 SN - 2365-659X SN - 2365-6581 VL - 1 IS - 11 SP - 1 EP - 19 AN - OPUS4-40234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Müller, L. A1 - Traub, Heike A1 - Jakubowski, Norbert ED - Prof. Dr. Golloch, Alfred T1 - Novel applications of lanthanoides as analytical or diagnostic tools in the life sciences by ICP-MS-based techniques N2 - Inductively coupled plasma mass spectrometry (ICP-MS) is a well-established analytical method for multi-elemental analysis in particular for elements at trace and ultra-trace levels. It has found acceptance in various application areas during the last decade. ICP-MS is also more and more applied for detection in the life sciences. For these applications, ICP-MS excels by a high sensitivity, which is independent of the molecular structure of the analyte, a wide linear dynamic range and by excellent multi-element capabilities. Furthermore, methods based on ICP-MS offer simple quantification concepts, for which usually (liquid) standards are applied, low matrix effects compared to other conventional bioanalytical techniques, and relative limits of detection (LODs) in the low pg g−1 range and absolute LODs down to the attomol range. In this chapter, we focus on new applications where the multi-element capability of ICP-MS is used for detection of lanthanoides or rare earth elements, which are applied as elemental stains or tags of biomolecules and in particular of antibodies. KW - ICP-MS KW - Life sciences KW - Mass cytometry KW - Laser ablation (LA)-ICP-MS KW - Bioimaging PY - 2017 SN - 978-3-11-036523-8 SP - Chapter 11, 301 EP - 320 PB - De Gruyter AN - OPUS4-40244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Jakubowski, Norbert A1 - Müller, L. A1 - Traub, Heike A1 - Esteban-Fernández, D. A1 - Panne, Ulrich A1 - Herrmann, Antje A1 - Schellenberger, E. A1 - Theuring, F. A1 - Kneipp, Janina T1 - Imaging by laser ablation ICP-MS N2 - ICP-MS is a well-established analytical method which excels by high accuracy, high dynamic range and extremely low limits of detection for most metals. Furthermore ICP-MS offers a very high multi-element coverage so that many elements of the periodic table can be detected simultaneously. In this series of lectures, we want to focus on the historical developments, fundamentals, instrumentation and novel applications of ICP-MS in the life and material sciences. T2 - Ringvorlesung Analytik CY - Humboldt-Universität zu Berlin DA - 23.06.2017 KW - Laser ablation ICP-MS KW - Bio-Imaging PY - 2017 AN - OPUS4-40757 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -