TY - JOUR A1 - Serrano Munoz, Itziar A1 - Roveda, Ilaria A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Synchrotron X-ray refraction detects microstructure and porosity evolution during in-situ heat treatments JF - Materials science and engineering A N2 - For the first time, synchrotron X-ray refraction radiography (SXRR) has been paired with in-situ heat treatment to monitor microstructure and porosity evolution as a function of temperature. The investigated material was a laser powder bed fusion (LPBF) manufactured AlSi10Mg, where the initial eutectic Si network is known to disintegrate and spherodize into larger particles with increasing temperature. Such alloy is also prone to thermally induced porosity (TIP). We show that SXRR allows detecting the changes in the Si-phase morphology upon heating, while this is currently possible only using scanning electron microscopy. SXRR also allows observing the growth of pores, usually studied via X-ray computed tomography, but on much smaller fields-of-view. Our results show the great potential of in-situ SXRR as a tool to gain in-depth knowledge of the susceptibility of any material to thermally induced damage and/or microstructure evolution over statistically relevant volumes. KW - Synchrotron X-ray refraction radiography KW - Si network disintegration KW - Thermally induced porosity (TIP) KW - Laser powder bed fusion (LPBF) KW - Statistically relevant volumes KW - AlSi10Mg alloy PY - 2022 DO - https://doi.org/10.1016/j.msea.2022.142732 SN - 0921-5093 VL - 838 SP - 1 EP - 11 PB - Elsevier CY - Amsterdam AN - OPUS4-54297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Laquai, René A1 - Wieder, Frank A1 - Kupsch, Andreas A1 - Müller, Bernd R. T1 - The combined use of X-ray refraction and transmission radiography and computed tomography T2 - Proceedings 11th Conference on Industrial Computed Tomography N2 - Alternative to conventional transmission-based radiography and computed tomography, X-ray refraction techniques are being increasingly used to detect damage in light materials. In fact, their range of application has been recently extended even to metals. The big advantage of X-ray refraction techniques is that they are able to detect nanometric defects, whose size would lie below the resolution of even state-of-the-art synchrotron-based X-ray computed tomography (SXCT). The superiority of synchrotron X-ray refraction radiography and tomography (SXRR and SXRCT) has been shown in the case of light materials, in particular composites. X-ray refraction techniques also yield a quantitifaction of the amount of damage (the so-called relative internal specific surface) and can well be compared with damage models. At the same time, it is impossible for SXRR and SXRCT to image single defects. We show that the combination of refraction- and transmission-based imaging techniques yields an impressive amount of additional information about the type and amount of defects in microstructured materials such as additively manufactured metals or metal matrix composites. We also show that the use of data fusion techniques allows the classification of defects in statistically significant representative volume elements. T2 - 11th Conference on Industrial Computed Tomography CY - Online meeting DA - 08.02.2022 KW - X-ray refraction radiography KW - Computed Tomography KW - Synchrotron radiation KW - Additive manufacturing KW - Damage evolution PY - 2022 UR - https://www.ndt.net/article/ctc2022/papers/ICT2022_paper_id268.pdf SP - 1 EP - 7 AN - OPUS4-54324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chen, Cong A1 - Müller, Bernd R. A1 - Prinz, Carsten A1 - Stroh, Julia A1 - Feldmann, Ines A1 - Bruno, Giovanni T1 - The correlation between porosity characteristics and the crystallographic texture in extruded stabilized aluminium titanate for diesel particulate filter applications JF - Journal of the European Ceramic Society N2 - Porous ceramic diesel particulate filters (DPFs) are extruded products that possess macroscopic anisotropic mechanical and thermal properties. This anisotropy is caused by both morphological features (mostly the orientation of porosity) and crystallographic texture. We systematically studied those two aspects in two aluminum titanate ceramic materials of different porosity using mercury porosimetry, gas adsorption, electron microscopy, X-ray diffraction, and X-ray refraction radiography. We found that a lower porosity content implies a larger isotropy of both the crystal texture and the porosity orientation. We also found that, analogous to cordierite, crystallites do align with their axis of negative thermal expansion along the extrusion direction. However, unlike what found for cordierite, the aluminium titanate crystallite form is such that a more pronounced (0 0 2) texture along the extrusion direction implies porosity aligned perpendicular to it. KW - Preferred orientation KW - X-ray refraction KW - Pore orientation KW - Crystal structure KW - Extrusion KW - Microstructure-property relations PY - 2020 DO - https://doi.org/10.1016/j.jeurceramsoc.2019.11.076 SN - 0955-2219 VL - 40 IS - 4 SP - 1592 EP - 1601 PB - Elsevier Ltd. AN - OPUS4-50325 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mouiya, M. A1 - Martynyuk, M. A1 - Kupsch, Andreas A1 - Laquai, R. A1 - Müller, Bernd R. A1 - Doyen, N.T. A1 - Tamraoui, Y. A1 - Serrano Munoz, Itziar A1 - Huger, M. A1 - Kachanov, M. A1 - Bruno, Giovanni T1 - The stress–strain behavior of refractory microcracked aluminum titanate: The effect of zigzag microcracks and its modeling JF - Journal of the American Ceramic Society N2 - The stress–strain behavior of ceramics, such as aluminum titanate, has certain features that are unusual for brittle materials—in particular, a substantial nonlinearity under uniaxial tension, and load–unload hysteresis caused by the sharp increase of the incremental stiffness at the beginning of unloading. These features are observed experimentally and are attributed to microcracking. Here we compare different degrees of stress–strain nonlinearity of aluminum titanate materials and quantitatively model them. We use advanced mechanical testing to observe the mechanical response at room and high temperature; electron microscopy, and X-ray refraction radiography to observe the microstructural changes. Experiments show that two types of microcracks can be distinguished: (i) microcracks induced by cooling from the sintering temperature (due to heterogeneity and anisotropy of thermal expansion), with typical sizes of the order of grain size, and (ii) much larger microcracks generated by the mechanical loading. The two microcrack types produce different effects on the stress–strain curves. Such microcracks and the features of the stress–strain behavior depend on the density of the cooling-induced microcracks and on the distribution of grain sizes. They are modeled analytically and numerically. KW - Hystersis KW - Nonlinear stress-strain curve KW - Refractory KW - Stiffness KW - X-ray refraction PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580517 DO - https://doi.org/10.1111/jace.19325 SN - 1551-2916 VL - 106 SP - 6995 EP - 7008 PB - Wiley-Blackwell CY - Oxford [u.a.] AN - OPUS4-58051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Göbel, M. A1 - Kirsch, S. A1 - Schwarze, L: A1 - Schmidt, L. A1 - Scholz, H. A1 - Haußmann, J. A1 - Klages, M. A1 - Scholta, J. A1 - Markötter, H. A1 - Alrwashdeh, S. A1 - Manke, I. A1 - Müller, Bernd R. T1 - Transient limiting current measurements for characterization of gas diffusion layers JF - Journal of Power Sources N2 - The water management in proton exchange membrane fuel cells (PEMFC) is strongly influenced by the design of the gas diffusion layers (GDL). Limiting current measurements in small-scale cells operating at high stoichiometries are useful to determine the oxygen transport resistance. The oxygen transport resistance increases, once water condenses inside the GDL. In this study a new electrochemical method for voltage loss estimation of GDL induced oxygen transport losses are presented. This new method, referred to as “transient limiting current” (TLC), is compared with the literature method. TLC allows a direct estimation of oxygen transport resistance at an arbitrarily conditioned state. This study also presents a case study of liquid water visualization of a PEM fuel cell with varying GDLs types. With the help of quasi in-situ synchrotron X-ray computed tomography and time resolved radiography measurements we investigate appearance and distribution of liquid water inside the GDLs under limiting current conditions. KW - In-situ characterization of GDLs KW - In-situ synchrotron X-ray computed tomography KW - In-situ synchrotron X-ray radiography KW - BAMline PY - 2018 DO - https://doi.org/10.1016/j.jpowsour.2018.09.003 SN - 0378-7753 SN - 1873-2755 VL - 402 SP - 237 EP - 245 PB - Elsevier B.V. AN - OPUS4-46552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Laquai, René A1 - Müller, Bernd R. A1 - Schneider, J. A1 - Kupsch, Andreas A1 - Bruno, Giovanni T1 - Using SXRR to Probe the Nature of Discontinuities in SLM Additive Manufactured Inconel 718 Specimens JF - Metallurgical and Materials Transactions A N2 - The utilization of additive manufacturing (AM) to fabricate robust structural components relies on understanding the nature of internal anomalies or discontinuities, which can compromise the structural integrity. While some discontinuities in AM microstructures stem from similar mechanisms as observed in more traditional processes such as casting, others are unique to the AM process. Discontinuities in AM are challenging to detect, due to their submicron size and orientation dependency. Toward the goal of improving structural integrity, minimizing discontinuities in an AM build requires an understanding of the mechanisms of formation to mitigate their occurrence. This study utilizes various techniques to evaluate the shape, size, nature and distribution of discontinuities in AM Inconel 718, in a non-hot isostatic pressed (HIPed) as-built, non-HIPed and direct age, and HIPed with two step age samples. Non-destructive synchrotron radiation refraction and transmission radiography (SXRR) provides additional information beyond that obtained with destructive optical microscopy. SXRR was able to distinguish between voids, cracks and lack of melt in, due to its sensitivity to the orientation of the discontinuity. KW - Additive manufacturing KW - X-ray refraction radiography KW - INCONEL 718 KW - Selective laser melting PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509836 DO - https://doi.org/10.1007/s11661-020-05847-5 SN - 1543-1940 VL - 51 IS - 8 SP - 4146 EP - 4157 PB - Springer AN - OPUS4-50983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Laquai, René A1 - Müller, Bernd R. A1 - Kasperovich, G. A1 - Haubrich, J. A1 - Requena, G. A1 - Bruno, Giovanni T1 - X-ray refraction distinguishes unprocessed powder from empty pores in selective laser melting Ti-6Al-4V JF - Materials Research Letters N2 - For the first time, X-ray refraction techniques are proven for the identification of void formation in Ti-6Al-4V parts produced by selective laser melting. The topology and volume fraction of pores are measured in samples produced with different laser energy density. Unique X-ray refraction methods identify different kinds of defects, characteristic to the regions below and above the Optimum laser energy density, namely unprocessed powder (unmolten powder particles, balling effect, and Fusion defects) from empty keyhole pores. Furthermore, it is possible to detect small inhomogeneities (voids or cracks) with sizes below the spatial resolution of optical microscopy and X-ray computed tomography. KW - Additive manufacturing KW - X-ray refraction KW - Microscopy KW - X-ray computed tomography KW - Porosity PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-434041 DO - https://doi.org/10.1080/21663831.2017.1409288 SN - 2166-3831 VL - 6 IS - 2 SP - 130 EP - 135 PB - Taylor & Francis Group CY - London, UK AN - OPUS4-43404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Serrano Munoz, Itziar A1 - Kupsch, Andreas A1 - Müller, Bernd R. T1 - X-Ray-Refraction-Imaging-Techniques high-resolution microstructural characterization N2 - X-ray refraction is analogous to visible light deflection by matter; it occurs at boundaries between different media. The main difference between visible light and X-rays is that in the latter case deflection angles are very small, from a few seconds to a few minutes of arc (i.e., the refraction index n is near to 1). Trivially but importantly, deflection of X-rays is also sensitive to the orientation of the object boundaries. These features make X-ray refraction techniques extremely suitable to a) detect defects such as pores and microcracks and quantify their densities in bulk (not too heavy) materials, and b) evaluate porosity and particle properties such as orientation, size, and spatial distribution (by mapping). While X-ray refraction techniques cannot in general image single defects, their detectability is simply limited by the wavelength of the radiation. We thereby show the application of X-ray refraction 2D mapping (topography) and tomography to different sorts of problems in materials science and technology: 1) Sintering of SiC green bodies; 2) Porosity analysis in additively manufactured alloys; 3) Fiber de-bonding in metal and polymer matrix composites. Such techniques, especially at the Synchrotron BESSY II, Berlin, Germany, can be used in-situ, i.e. when the specimen is subjected to temperatures or external loads. Applications of in-situ X-ray refraction radiography on aluminum alloys and composites are also shown. The use of X-ray refraction analysis yields quantitative information, which can be directly input in kinetics, mechanical and damage models. T2 - ICT 2023 CY - Fürth, Germany DA - 27.02.2023 KW - X-ray refraction KW - Composites KW - In-situ KW - Additive Manufacturing KW - Sintering KW - Ceramics PY - 2023 AN - OPUS4-57200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -