TY - CONF A1 - Prager, Jens A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Held, Mathias A1 - Klärner, M. A1 - Winkler, T. A1 - Kroll, L. T1 - Akustische Bestimmung der Werkstoffparameter faserverstärkter Kunststoffe durch Auswertung der Dispersionseigenschaften geführter Wellen T2 - Tagungsband DAGA 2021 N2 - Akustische Verfahren eignen sich hervorragend zur Bestimmung der Werkstoffeigenschaften. Die Verfügbarkeit derartiger Verfahren ist vor allem für Kunststoffe wichtig, da deren Eigenschaften stark abhängig vom jeweiligen Herstellungsprozess und vom Alterungszustand sind. Exakte und vollständige Werte sind daher in Datenbanken oder von Herstellern nur begrenzt zu finden. Insbesondere die Entwicklung von Methoden zur Charakterisierung faserverstärkter Kunststoffe (FKV) ist nach wie vor Gegenstand der Forschung. Hier müssen anisotropiebedingt mehrere Kennwerte bestimmt werden. Da FKV zumeist als dünnwandige Bauteile zum Einsatz kommen, können die Werkstoffparameter aus den Dispersionseigenschaften der Lamb-Wellen, die sich in diesen Strukturen ausbreiten, abgeleitet werden. Dazu ist eine räumliche Abtastung des sich ausbreitenden Schallfelds erforderlich. In der vorliegenden Untersuchung wird dieser Ansatz für die relativ neue Werkstoffklasse der faserverstärkten Thermoplaste angewendet. Diese zeichnet ein ausgeprägtes Dämpfungsverhalten und eine Anisotropie der Materialparameter aus. Dazu wurde das Schallfeld im Ultraschallbereich mit einem Laser-Doppler-Vibrometers vermessen. Rechnerisch bestimmte Dispersionskurven wurden dann an die gemessenen Werte angepasst, womit die richtungsabhängigen Materialparameter bestimmt werden konnten. Im Vortrag wird das Messverfahren vorgestellt und auf spezielle Probleme, die sich z.B. aus dem Dämpfungsverhalten des Werkstoffs ergeben, eingegangen. Ausgewählte gemessene Werte werden mit den Ergebnissen von Referenzverfahren verglichen. T2 - DAGA 2021 - 47. Jahrestagung für Akustik CY - Vienna, Austria DA - 15.08.2021 KW - Ultraschall KW - Composites KW - Thermoplastische Kunststoffe PY - 2021 SP - 52 EP - 55 PB - Deutsche Gesellschaft für Akustik (DEGA) CY - Berlin AN - OPUS4-57340 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Prager, Jens T1 - Analyse der Ausbreitung geführter Wellen in einem Mehrschichtverbund zur Zustandsüberwachung von Composite-Druckbehältern N2 - Composite-Druckbehälter werden für Speicherung und Transport von Gasen unter hohem Druck verwendet. Durch die gewichtssparende Struktur, die aus einem dünnwandigem Metallgefäß und Faserverbundwerkstoff-Ummantelung besteht, sind solche Behälter insbesondere für die Luftfahrt- und Automobilindustrie interessant, z.B. als Wasserstoffspeicher. Die Druckprüfung ist ein konventioneller Test, um die Integrität von Metalldruckbehältern zu bewerten. Im Falle des Composite-Druckbehälters könnte eine solche Prüfung jedoch den Faserverbundwerkstoff überbeanspruchen und somit die verbleibende Lebensdauer der getesteten Komponente verringern. Infolgedessen ist es notwendig, Verfahren zur zerstörungsfreien Prüfung und möglicherweise zur Zustandsüberwachung von Composite-Druckbehältern zu entwickeln. Unser Ansatz verwendet geführte Ultraschallwellen und hat das Potenzial, kritische Schäden wie Risse im Metall und Faserbrüche und Matrixrisse in Faserverbundwerkstoff zu detektieren. In diesem Beitrag wurde die Scaled Boundary Finite Elemente Methode benutzt, um die multimodale, geführte Wellenausbreitung in einem Mehrschichtverbund, der aus Metall und Kohlenfaserverbund entsteht, zu analysieren. Das Verfahren ermöglicht die Identifizierung geeigneter Wellenmoden und die Analyse ihrer Interaktion mit verschiedenen Schäden. Diese Kenntnisse sollen für die Entwicklung von Verfahren zur Zustandsüberwachung von Composite-Druckbehältern angewendet werden. T2 - 22. Kolloquium Schallemission und 3. Anwenderseminar Zustandsüberwachung mit geführten Wellen CY - Karlsruhe, Germany DA - 27.03.2019 KW - Wasserstoffspeicher KW - Automobilindustrie KW - SBFEM KW - Faserverbundwerkstoff KW - Ultraschallwellen PY - 2019 AN - OPUS4-47689 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Prager, Jens T1 - Analyse geführter Wellenausbreitung in einem MehrschichtVerbund: Simulation mit SBFEM N2 - Die Scaled Boundary Finite Elemente Methode (SBFEM) ist eine semi-analytische Methode, die vielversprechende Ergebnisse bei der Modellierung geführter Ultraschallwellen zeigt. Effizienz und niedriger Rechenaufwand der Methode werden durch Diskretisierung des Randes der Rechendomäne erreicht, während für die Domäne selbst die analytische Lösung verwendet wird. Mittels der SBFEM können verschiedene Arten von Fehlern können modelliert werden, z. Risse, Poren, Delamination, Korrosion, die in eine Struktur aus anisotropen und isotropen Materialien integriert sind. In diesem Beitrag wird das SBFEM verwendet, um die Ausbreitung von geführten Wellen in einer Struktur zu analysieren, die aus einem isotropen Metall besteht, das an anisotropes Kohlefaserverstärktes Material gebunden ist. Das Verfahren ermöglicht die Identifizierung geeigneter Wellentypen (Modi) und die Analyse ihrer Interaktion mit verschiedenen Defekten. Die erzielten Ergebnisse werden zur Entwicklung eines Zustandsüberwachungssystems für Composite-Druckbehälter verwendet, die in der Automobil- und Luftfahrtindustrie benutzt werden. T2 - Doktorandenseminar – Ultraschallmesstechnik CY - Gohrish, Germany DA - 28.10.2018 KW - Composite-Druckbehälter KW - Geführte Ultraschallwellen KW - SBFEM KW - Faserverbundwerkstoff KW - Wasserstoffspeicher PY - 2018 AN - OPUS4-46417 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lauschkin, Maik A1 - Bulling, Jannis A1 - Lugovtsova, Yevgeniya A1 - Wasmer, P. A1 - Prager, Jens T1 - Bestimmung von Materialparametern aus dem dispersiven Verhalten geführter Wellen mittels neuronaler Netze T2 - DAGA 2020 - 46. Jahrestagung für Akustik N2 - Damit eine Simulationsrechnung, beispielsweise mit einer FEM-Software, eine ausreichend hohe Genauigkeit erreicht, muss vorausgesetzt werden, dass die Modellparameter eine sehr hohe Güte aufweisen. Die genaue Kenntnis der Materialparameter ist dabei von besonderer Bedeutung. Um diese Parameter bestimmen zu können, müssen die verwendeten Werkstoffe messtechnisch charakterisiert werden. Neben anderen Ansätzen sind dafür akustische Verfahren im Ultraschallbereich geeignet. Für dünnwandige und plattenförmige Materialien können aus den sich ausbreitenden geführten Wellen messtechnisch Dispersionskurven bestimmt und aus diesen die Materialparameter abgeleitet werden. Da für die Signalverarbeitung und für Optimierungsaufgaben aktuell zunehmend Machine Learning Tools zum Einsatz kommen, stellt sich die Frage, ob diese Werkzeuge auch für die Ermittlung der Materialparameter aus den gemessenen Dispersionskurven eingesetzt werden können. In der vorgestellten Untersuchung soll ein Convolutional Neural Network aufgestellt werden, welches aus Dispersionsbildern Muster extrahiert und aus diesen eine Schätzung für die Materialparameter ermittelt. Um die Machbarkeit dieses Ansatzes zu prüfen, werden zunächst nur isotrope Materialien betrachtet. Für das Netz werden mit der Scaled-Boundary-Finite-Element-Methode synthetische Daten für das Trainieren und Validieren generiert. Zusätzlich werden die Hyperparameter des neuronalen Netzes variiert, um ein optimales Model für die Schätzung zu finden. Anschließend kann das Netz mit experimentellen Daten getestet und das Ergebnis hinsichtlich der Genauigkeit bewertet werden. T2 - DAGA 2020 - 46. Jahrestagung für Akustik CY - Meeting was canceled DA - 16.03.2020 KW - Machinelles Lernen KW - Geführte Ultraschallwellen KW - Materialcharakterisierung KW - Elastische Konstanten KW - Isotrope Materialien PY - 2020 SN - 978-3-939296-17-1 SP - 571 EP - 574 PB - Deutsche Gesellschaft für Akustik e.V. CY - Berlin AN - OPUS4-50765 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nicolai, Marcel A1 - Zeipert, H. A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Prager, Jens A1 - Henning, B. A1 - Lozano Duarte, Daniel Hernando T1 - Charakterisierung von Haftfestigkeiten mittels geführter Ultraschallwellen N2 - Klebeverbindungen sind aus vielen Anwendungen wie dem Leichtbau nicht mehr wegzudenken. Durch die Verklebung gleicher oder ungleicher Materialien entstehen viele Vorteile gegenüber konservativen Fügeverfahren. Jedoch stellen schwache Haftfestigkeiten eine sehr unbeliebte Fehlerart dar, die schlecht zu detektieren sind und zu einem frühzeitigen Versagen der Verklebung bei vergleichsweise geringen Belastungen führen können. Aufgrund hoher Sicherheits- und Qualitätsansprüche wird die Haftfestigkeit dieser Verbindungen jedoch noch immer zerstörend geprüft. Zufriedenstellende zerstörungsfreie Verfahren, um Haftfestigkeiten zu prüfen, sind nicht vorhanden und Thema gegenwärtiger Forschung. Ein Ansatz, der in diesem Projekt verfolgt wird, liegt in der Verwendung geführter Ultraschallwellen. Hierzu wird anhand von Simulationen mittels der Scaled Boundary Finite Element Methode gezeigt, dass die gezielte Auswertung bestimmter Bereiche des Dispersionsdiagrams, den sogenannten vermiedenen Kreuzungen (engl. mode repulsion regions), eine Charakterisierung der Haftfestigkeiten zulassen könnten. Dies liegt darin begründet, dass die mittleren mechanischen Belastungen der Kleberschicht in diesen Bereichen ein lokales Maximum aufweisen und daher eine erhöhte Sensitivität auf Materialänderungen haben. Es wird gezeigt, wie sensitiv diese Bereiche auf Materialänderungen in der Klebergrenzschicht sind und welche potenziellen Fehlergrößen existieren. T2 - Schall 23 CY - Wetzlar, Germany DA - 20.03.2023 KW - Adhesive Bonding KW - Kissing Bonds KW - NDT KW - Ultrasonic Guided Waves KW - SBFEM PY - 2023 AN - OPUS4-57379 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Krome, Fabian A1 - Prager, Jens T1 - Effiziente Modellierung von geführten Wellen mit der Scaled Boundary Finite Elemente Methode und deren Anwendung für Composite-Druckbehälter T2 - DGZfP-Jahrestagung 2018 N2 - Die Scaled Boundary Finite Elemente Methode (SBFEM) ist eine semi-analytische Methode, die speziell für Modellierung von geführten Wellen weiterentwickelt und optimiert wurde. Da nur den Rand der Rechendomäne diskretisiert wird, hat die SBFEM einen geringen Rechenaufwand. In diesem Beitrag wird die SBFEM benutzt, um die Ausbreitung geführter Wellen in einer Metall-Faserverbund-Werkstoffstruktur zu analysieren. Mittels der SBFEM ist es möglich, verschiede Fehlertypen, z.B. Ermüdungsrisse, Poren, Delaminationen, Korrosion, in das numerische Modell zu integrieren und damit Defekt-Mode-Wechselwirkung zu analysieren. Die Ergebnisse wurden für die Entwicklung einer Methode zur Zustandsüberwachung von Composite-Druckbehältern verwendet. T2 - DGZfP-Jahrestagung 2018 CY - Leipzig, Germany DA - 07.05.2018 KW - Wasserstoffspeicher KW - Automobilindustrie KW - Kohlenstofffaserverstärkter Kunststoff KW - Hybrid Materialien PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-449797 SP - 1 EP - 4 AN - OPUS4-44979 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Krome, Fabian A1 - Prager, Jens T1 - Effiziente Modellierung von geführten Wellen mit der Scaled Boundary Finite Elemente Methode und deren Anwendung für Composite-Druckbehälter N2 - Die Scaled Boundary Finite Elemente Methode (SBFEM) ist eine semi-analytische Methode, die speziell für Modellierung von geführten Wellen weiterentwickelt und optimiert wurde. Da nur den Rand der Rechendomäne diskretisiert wird, hat die SBFEM einen geringen Rechenaufwand. In diesem Beitrag wird die SBFEM benutzt, um die Ausbreitung geführter Wellen in einer Metall-Faserverbund-Werkstoffstruktur zu analysieren. Mittels der SBFEM ist es möglich, verschiede Fehlertypen, z.B. Ermüdungsrisse, Poren, Delaminationen, Korrosion, in das numerische Modell zu integrieren und damit Defekt-Mode-Wechselwirkung zu analysieren. Die Ergebnisse wurden für die Entwicklung einer Methode zur Zustandsüberwachung von Composite-Druckbehältern verwendet. T2 - DGZfP-Jahrestagung 2018 CY - Leipzig, Germany DA - 07.05.2018 KW - Wasserstoffspeicher KW - Automobilindustrie KW - Kohlenstofffaserverstärkter Kunststoff KW - Hybrid Materialien PY - 2018 AN - OPUS4-44980 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Mesnil, Olivier A1 - Bulling, Jannis A1 - Prager, Jens A1 - Boller, Christian T1 - Erstellung von Wellenzahlkarten zur Schadensquantifizierung auf Basis von geführten Ultraschallwellen N2 - Die Verwendung von Verbundwerkstoffen ist nicht nur mit den Vorteilen einer Gewichtsreduzierung und einer verbesserten strukturellen Leistung verbunden, sondern auch mit der Gefahr von kaum sichtbaren Impakt- oder Herstellungsschäden. Eine der vielversprechenden Methoden zur Erkennung und Charakterisierung solcher Schäden basiert auf der Ausbreitung und Analyse geführter Ultraschallwellen. Der multimodale und dispersive Charakter dieser Wellen erschweren jedoch die Analyse. Verschiedene Signalverarbeitungsmethoden wurden vorgeschlagen, um die Interpretation von Signalen und die Extraktion der notwendigen Informationen über den Schaden zu erleichtern. Eine davon ist die Erstellung einer Wellenzahlkarte. Die Wellenzahlkarte erlaubt es jeden Punkt in einer hochaufgelöste Wellenfeldaufnahme eine Wellenzahl zuzuordnen. Diese Methode ermöglicht sowohl die Quantifizierung der Größe als auch der Tiefe des Schadens. In diesem Beitrag wird diese Bildgebungsmethode auf delaminierte Aluminium-CFK-Verbundstrukturen angewendet. Solche Strukturen entsprechen den umwickelten Druckbehältern, die zur Speicherung von Gasen in der Luft- und Raumfahrt sowie in der Automobilindustrie verwendet werden. Zunächst werden die numerischen Untersuchungen zur einfachen Delamination in unterschiedlicher Tiefe vorgestellt. Als nächstes wird die Analyse von experimentellen Ergebnissen von einer geschädigten Aluminium-CFK-Platte präsentiert. Das Ergebnis der Bildgebung ist eine dreidimensionale Darstellung, die sowohl die Größe als auch die Tiefe des Impakt-Schadens liefert. T2 - Doktorandenseminar "Geführte Wellen" CY - Delbrück, Germany DA - 21.10.2019 KW - Schaden Quantifizierung KW - Faserverbundwerkstoffe KW - Geführte Wellen KW - Ultraschall KW - Impakt-Schaden PY - 2019 AN - OPUS4-49392 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Prager, Jens A1 - Schubert, Lars A1 - Tschöke, Kilian T1 - Fehlerwechselwirkung in Verbundwerkstoffen mit Geführten Wellen N2 - Der praktische Einsatz von SHM-Verfahren mit geführten Ultraschallwellen basiert auf einem fundierten Verständnis der speziellen physikalischen Zusammenhänge der Wellenausbreitung. Das umfasst nicht nur das multimodale Verhalten, welches von den Dispersionsdiagrammen repräsentiert wird, sondern auch die Vorhersage der Interaktion zwischen verschiedenen Wellenmoden und den zu erwartenden Fehlstellen. Ziel des Workshops ist es, das Verständnis der Ausbreitung geführter Wellen zu verbessern und die vielfältigen Anwendungsmöglichkeiten, die sich aus der multimodalen Wellenausbreitung ergeben, an praktischen Beispielen zu demonstrieren. Die vorgestellten Szenarien beschränken sich dabei nicht nur auf eine Anregung grundlegender Dehnungs- und Biegewellen, sondern beziehen auch geführte Wellenmoden höherer Ordnung zur Verbesserung der Aussagekraft des Prüfergebnisses mit ein. Nach einer theoretischen Einführung werden ausgewählte Demonstratoren, vorrangig mit Bezug zum Automobilbau, vorgestellt. Diese schließen Fragestellungen der Integration der Sensorik in gekrümmte Faserverbundbauteile ebenso mit ein, wie die Überwachung von Metall-Faserverbund-Komposit-Materialien, die in Drucktanks zum Einsatz kommen. T2 - 3. Anwenderseminar Zustandsüberwachung mit geführten Wellen CY - Karlsruhe, Germany DA - 27.03.2019 KW - Wasserstoffspeicher KW - Geführte Ultraschallwellen KW - Kohlenstofffaserverstärkter Kunststoff KW - Faserverbundwerkstoff PY - 2019 AN - OPUS4-48383 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Held, Mathias A1 - Rashwan, Abdalla A1 - Bulling, Jannis A1 - Lugovtsova, Yevgeniya A1 - Lauschkin, Maik A1 - Prager, Jens T1 - Inverse Bestimmung elastischer Materialparameter aus dem Ausbreitungsverhalten geführter Ultraschallwellen mittels eines Convolutional Neuronal Networks T2 - Tagungsband DAGA 2021 - 47. Jahrestagung für Akustik N2 - Detailliertes Wissen über die mechanischen Eigenschaften verwendeter Materialien ist Grundvoraussetzung für viele ingenieurtechnische Aufgaben und Dienstleistungen. Zur Bestimmung der elastischen Materialparameter gibt es verschiedene klassische, zerstörende Prüfverfahren. Eine Möglichkeit der zerstörungsfreien Bestimmung liegt in der Auswertung von Messergebnissen, die auf Basis des Ausbreitungsverhaltens geführter Ultraschallwellen gewonnen wurden. Das Ausbreitungsverhalten geführter Ultraschallwellen kann mittels Dispersionsabbildungen dargestellt werden. Um aus messtechnisch ermittelten Dispersionsabbildungen Rückschlüsse auf die Materialparameter zu ziehen, werden in der aktuellen Forschung verschiedene inverse Methoden diskutiert. Maschinelles Lernen und insbesondere Convolutional Neural Networks (CNNs) stellen eine Möglichkeit der automatisierten inversen Modellierung und Evaluierung von Bilddaten dar. In diesem Beitrag wird gezeigt, wie das Ausbreitungsverhalten von geführten Ultraschallwellen unter Verwendung von CNNs genutzt werden kann, um die isotropen elastischen Konstanten einer plattenförmigen Struktur zu bestimmen. Hierfür werden die verwendeten Daten analysiert, das Preprocessing erläutert und eine grundlegende CNN-Architektur gewählt. Zur Auswertung des generierten Modells werden verschiedene Verfahren wie Gradienten-Mapping und die Visualisierung der verschiedenen Schichten vorgestellt. Die Anwendbarkeit der Methode wird anhand synthetischer Daten demonstriert. T2 - DAGA 2021 CY - Vienna, Austria DA - 15.08.2021 KW - Geführte Ultraschallwellen KW - Inverse Probleme KW - Materialcharakterisierung KW - Maschinelles Lernen KW - Dispersion KW - Lamb Wellen PY - 2021 SN - 978-3-939296-18-8 VL - 47 SP - 659 EP - 662 AN - OPUS4-53492 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -