TY - CONF A1 - Bayane, I. A1 - Long, Lijia A1 - Thöns, Sebastian A1 - Brühwiler, E. T1 - Quantification of the conditional value of SHM data for the fatigue safety evaluation of a road viaduct N2 - Fatigue safety verification of existing bridges that uses ‘‘re-calculation’’ based on codes, usually results in insufficient fatigue safety, triggering invasive interventions. Instead of “re-calculation”, Structural Health Monitoring (SHM) should be used for the assessment of the existing bridges. Monitoring systems provide data that can reduce uncertainties associated with the fatigue loading process and the structural resistance. The objective of this paper is to quantify the value of the SHM system implemented in a 60-years-old road viaduct to investigate its fatigue safety, through modeling of the fundamental decisions of performing monitoring in conjunction with its expected utility. The quantification of the conditional value of information is based on the decision tree analysis that considers the structural reliability, various decision scenarios as well as the cost-benefit assessments. This leads to a quantitative decision basis for the owner about how much time and money can be saved while the viaduct fulfills its function reliably and respects the safety requirements. The originality of this paper stands in the application of the value of information theory to an existing viaduct considering the fatigue failure of the system based on the monitoring data and the cost-benefit of monitoring method. T2 - 13th International Conference on Applications of Statistics and Probability in Civil Engineering CY - Seoul, South Korea DA - 26.05.2019 KW - Fatigue safety KW - Value of information PY - 2019 SP - 275 EP - 288 CY - Seoul, South Korea AN - OPUS4-50809 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Long, Lijia A1 - Alcover, I. F. A1 - Thöns, Sebastian T1 - Quantification of the posterior utilities of SHM campaigns on an orthotropic steel bridge deck N2 - This paper contains a quantification and decision theoretical optimization of the posterior utilities for several options for monitoring campaigns on the particular case of fatigue life predictions of an orthotropic steel deck. The monitoring campaigns are defined by varying monitoring durations and phases. The decision analysis is performed with real data from the Structural Health Monitoring (SHM) of the Great Belt Bridge (Denmark) which, among others, consist of measured strains, pavement temperatures and traffic intensities. The fatigue loading prediction model is based on regression models linking daily averaged pavement temperatures, daily aggregated heavy-traffic Counts and derived S-N fatigue damages, all of them derived from the outcomes of different monitoring campaigns. A probabilistic methodology is utilized to calculate the fatigue reliability profiles of selected instrumented welded joints. The posterior utilities of SHM campaigns are then quantified by considering the structural fatigue reliability, various monitoring campaigns and the corresponding cost-benefit models. The decisions of identifying the optimal monitoring campaign and of extending the service life or not in conjunction with monitoring results are modelled. The optimal monitoring campaign is identified - retrospectively - by maximizing the expected benefits and minimize risks in dependency of the monitoring duration and the monitoring associated costs. The results, despite relying on a number of simplistic assumptions, pave the way towards the use of pre-posterior decision support to optimise the design of monitoring campaigns for similar bridges, with an overall goal to proof the cost efficiency of SHM approaches to civil infrastructure management. T2 - The 12th International Workshop on Structural Health Monitoring CY - Stanford University, CA, USA DA - 10.09.2019 KW - SHM KW - Posterior utilities KW - Orthotropic steel bridge deck PY - 2019 SP - 265 EP - 274 AN - OPUS4-49174 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Long, Lijia A1 - Alcover, I. F. A1 - Thöns, Sebastian T1 - Quantification of the posterior utilities of SHM campaigns on an orthotropic steel bridge deck N2 - This paper contains a quantification and decision theoretical optimization of the posterior utilities for several options for monitoring campaigns on the particular case of fatigue life predictions of an orthotropic steel deck. The monitoring campaigns are defined by varying monitoring durations and phases. The decision analysis is performed with real data from the Structural Health Monitoring (SHM) of the Great Belt Bridge (Denmark) which, among others, consist of measured strains, pavement temperatures and traffic intensities. The fatigue loading prediction model is based on regression models linking daily averaged pavement temperatures, daily aggregated heavy-traffic Counts and derived S-N fatigue damages, all of them derived from the outcomes of different monitoring campaigns. A probabilistic methodology is utilized to calculate the fatigue reliability profiles of selected instrumented welded joints. The posterior utilities of SHM campaigns are then quantified by considering the structural fatigue reliability, various monitoring campaigns and the corresponding cost-benefit models. The decisions of identifying the optimal monitoring campaign and of extending the service life or not in conjunction with monitoring results are modelled. The optimal monitoring campaign is identified - retrospectively - by maximizing the expected benefits and minimize risks in dependency of the monitoring duration and the monitoring associated costs. The results, despite relying on a number of simplistic assumptions, pave the way towards the use of pre-posterior decision support to optimise the design of monitoring campaigns for similar bridges, with an overall goal to proof the cost efficiency of SHM approaches to civil infrastructure management. T2 - IWSHM 2019, The 12th International Workshop on Structural Health Monitoring, Stanford, California, USA CY - Stanford, California, USA DA - 10.09.2019 KW - Quantification KW - SHM information KW - Steel bridge deck PY - 2019 SP - 1 EP - 9 AN - OPUS4-48481 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Long, Lijia A1 - Thöns, Sebastian A1 - Döhler, M. T1 - Damage Detection and Deteriorating Structural Systems N2 - This paper addresses the quantification of the value of damage detection system and algorithm information on the basis of Value of Information (VoI) analysis to enhance the benefit of damage detection information by providing the basis for its optimization before it is performed and implemented. The approach of the quantification the value of damage detection information builds upon the Bayesian decision theory facilitating the utilization of damage detection performance models, which describe the information and its precision on structural system level, facilitating actions to ensure the structural integrity and facilitating to describe the structural system performance and its functionality throughout the service life. The structural system performance is described with its functionality, its deterioration and its behavior under extreme loading. The structural system reliability given the damage detection information is determined utilizing Bayesian updating. The damage detection performance is described with the probability of indication for different component and system damage states taking into account type 1 and type 2 errors. The value of damage detection information is then calculated as the difference between the expected benefits and risks utilizing the damage detection information or not. With an application example of the developed approach based on a deteriorating Pratt truss system, the value of damage detection information is determined,demonstrating the potential of risk reduction and expected cost reduction. T2 - International Workshop on Structural Health Monitoring CY - Stanford, CA, USA DA - 12.09.2017 KW - Reliability updating KW - Structural reliability and risks KW - Damage detection KW - Value of information PY - 2017 SN - 978-1-60595-330-4 SP - 1276 EP - 1284 AN - OPUS4-43624 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Long, Lijia A1 - Thöns, S. A1 - Döhler, M. T1 - The effects of deterioration models on the value of damage detection information N2 - This paper addresses the effects of the deterioration on the value of damage detection information. The quan-tification of the value of damage detection information for deteriorated structures is based on Bayesian pre-posterior decision analysis, comprising structural system performance models, consequence, benefit and costs models and damage detection information models throughout the service life of a structural system. The value of damage detection information accounts for the relevance and precision of the information to ensure the structural integrity and to reduce the potential structural system risks and expected costs throughout the ser-vice life before implementing damage detection system. With the developed approach, the value of damage detection information for a statically determinate Pratt truss bridge girder subjected to different deterioration models is calculated. The analysis shows the impact of the deterioration model parameters on the value of damage detection information. The results can be used to develop optimal maintenance strategies before im-plementation of the damage detection system. T2 - Sixth International Symposium on Life-Cycle Civil Engineering CY - Ghent, Belgium DA - 28.10.2018 KW - Value of information KW - Damage detection system KW - Deterioration model PY - 2018 SN - 978-1-138-62633-1 SN - 978-1-315-22891-4 SP - 2137 EP - 2144 PB - Taylor & Francis Group AN - OPUS4-46465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Long, Lijia A1 - Thöns, Sebastian A1 - Döhler, M. T1 - The effects of SHM system parameters on the value of damage detection information N2 - This paper addresses how the value of damage detection Information depends on key Parameters of the Structural Health Monitoring (SHM) system including number of sensors and sensor locations. The Damage Detection System (DDS) provides the information by comparing ambient vibration measurements of a (healthy) reference state with measurements of the current structural system. The performance of DDS method depends on the physical measurement properties such as the number of sensors, sensor positions, measuring length and sensor type, measurement noise, ambient excitation and sampling frequency, as well as on the data processing algorithm including the chosen type I error for the indication threshold. The quantification of the value of Information (VoI) is an expected utility based Bayesian decision analysis method for quantifying the difference of the expected economic benefits with and without information. The (pre-)posterior probability is computed utilizing the Bayesian updating theorem for all possible indications. If changing any key parameters of DDS, the updated probability of system failure given damage detection information will be varied due to different indication of probability of damage, which will result in changes of value of damage detection information. The DDS system is applied in a statically determinate Pratt truss bridge girder. Through the analysis of the value of information with different SHM system characteristics, the settings of DDS can be optimized for minimum expected costs and risks before implementation. T2 - 9th European Workshop on Structural Health Monitoring CY - Manchester, UK DA - 10.07.2018 KW - SHM KW - Damage detection system KW - Value of information PY - 2018 SP - 375 EP - 384 AN - OPUS4-46190 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -