TY - GEN A1 - Brookes, S. A1 - Scholz, A. A1 - Klingelhöffer, Hellmuth A1 - Whittaker, M. A1 - Loveday, M. A1 - Wisby, A. A1 - Ryder, N. A1 - Lohr, R. A1 - Stekovic, S. A1 - Moverare, J. A1 - Holdsworth, S. A1 - Dudzinski, D. T1 - Code of practice for force-controlled thermo-mechanical fatigue testing N2 - Components in the Aerospace, Power and Automotive engineering sectors are frequently subjected to cyclic stresses induced by thermal fluctuations and mechanical loads. For the design of such components, reliable material property data are required which need to be acquired using well accepted and reproducible test procedures for thermo-mechanical fatigue (TMF) loading. Available materials TMF property data are limited so that there is a need for further TMF data generated by TMF testing. The TMF behaviour of materials is often desired to be simulated in models which describe the cyclic stress-strain behaviour, the fatigue life and the cyclic crack growth behaviour. There is a continuous need for the development and amendment of such models. Models can be validated by using materials in industrial applications which are subjected to TMF loading. KW - Force controlled TMF testing PY - 2015 UR - http://www.tmf-workshop.bam.de/en/tmf_media/code_of_practice_for_force_controlled_thermo-mechanical_fatigue_(2).pdf SP - 1 EP - 32 AN - OPUS4-35248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -