TY - JOUR A1 - Günster, Jens A1 - Zocca, Andrea A1 - Lima, Pedro A1 - Acchar, W. T1 - 3D printing of porcelain by layerwise slurry deposition N2 - The Layerwise Slurry Deposition is a technology for the deposition of highly packed powder layers. A powder bed is achieved by depositing and drying layers of a ceramic suspension by means of a doctor blade. This deposition technique was combined with the binder jetting technology to develop a novel Additive Manufacturing technology, named LSD-print. The LSD-print was applied to a porcelain ceramic. It is shown that it was possible to produce parts with high definition, good surface finish and at the same time having physical and mechanical properties close to those of traditionally processed porcelain, e.g. by slip casting. This technology shows high future potential for being integrated alongside traditional production of porce-lain, as it is easily scalable to large areas while maintaining a good definition. Both the Layerwise Slurry Deposition method and the binder jetting technologies are readily scalable to areas as large as > 1 m2. KW - Binder jetting KW - Additive Manufacturing KW - 3D printing KW - Porcelain PY - 2018 U6 - https://doi.org/10.1016/j.jeurceramsoc.2018.03.014 SN - 0955-2219 VL - 38 IS - 9 SP - 3395 EP - 3400 PB - Elsevier Ltd. AN - OPUS4-45713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Lima, Pedro A1 - Günster, Jens T1 - LSD-based 3D printing of alumina ceramics N2 - An improved method of powder 3D printing leading to dense ceramic parts is presented. The application of powder-based binder jetting 3D printing technologies to technical ceramics is generally limited by the low packing density of the powder and by the need to use a flowable powder. With layer-wise slurry deposition, it is, however, possible to deposit powder beds with high particle packing and furthermore using submicron powders. This method was combined with the binder jetting technology to develop a novel process, named LSD-print. By means of LSD-print, a submicron Al2O3 powder could be processed to produce samples with a density comparable with that of standard pressed samples, both in the green state and after sintering. KW - Additive manufacturing KW - Layer-wise slurry deposition KW - Dense alumina KW - 3D printing PY - 2017 U6 - https://doi.org/10.4416/JCST2016-00103 SN - 2190-9385 VL - 8 IS - 1, SI SP - 141 EP - 147 PB - Göller Verlag GmbH CY - Baden Baden AN - OPUS4-39672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -