TY - CONF A1 - Liehr, Sascha A1 - Krebber, Katerina ED - De Roeck, G. ED - Degrande, G. ED - Lombaert, G. ED - Müller, G. T1 - A novel quasi-distributed long-gauge fiber optic strain sensor system for dynamic measurement T2 - EURODYN 2011 - 8th International conference on structural dynamics (Proceedings) N2 - We present a novel technique based on incoherent optical frequency domain reflectometry (OFDR) to measure length changes quasi-distributed between reflection points in optical fibres. The technique enables length changes to be measured with a resolution better than 1 µm and allows for static and dynamic measurement capabilities up to 2 kHz. We demonstrate that dynamic measurements of multiple fibre sections can be conducted independently from each other with high precision. Due to the precise and dynamic measurement capabilities, the proposed sensor system is expected to open new fields of application, especially in the structural-health-monitoring sector. Possible applications are discussed in the paper. T2 - EURODYN 2011 - 8th International conference on structural dynamics CY - Leuven, Belgium DA - 04.07.2011 KW - Distributed sensor KW - Strain sensor KW - Optical fiber sensor KW - Structural health monitoring KW - OFDR KW - Length change measurement KW - Dynamic sensor PY - 2011 SN - 978-90-760-1931-4 SP - 2097 EP - 2102 AN - OPUS4-24347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liehr, Sascha A1 - Krebber, Katerina T1 - A dynamic fiber optic strain and power change sensor T2 - 21st International conference on optical fibre sensors (Proceedings) N2 - A dynamic and quasi-distributed sensor principle for simultaneous measurement of length changes and optical power changes between reflection points in an optical fiber is presented. The technique is based on the incoherent optical frequency domain reflectometry (I-OFDR). Length change resolutions < 1 µm and measurement repetition rates up to 2 kHz can be achieved using standard single-mode and multi-mode optical fibers. Simultaneous length change and refractive index measurement as well as field test results showing the deformation of a masonry building under seismic load are presented. Promising fields of application for this technique are the structural health monitoring sector and chemical process control. T2 - 21st International conference on optical fibre sensors CY - Ottawa, Canada DA - 15.05.2011 KW - Distributed sensor KW - Strain sensor KW - Optical fiber sensor KW - Structural health monitoring KW - OFDR KW - Dynamic sensor PY - 2011 SN - 978-0-8194-8246-4 DO - https://doi.org/10.1117/12.884577 VL - 7753 SP - 775351-1 EP - 775351-4 AN - OPUS4-24266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -