TY - CONF A1 - Liehr, Sascha A1 - Krebber, Katerina ED - De Roeck, G. ED - Degrande, G. ED - Lombaert, G. ED - Müller, G. T1 - A novel quasi-distributed long-gauge fiber optic strain sensor system for dynamic measurement N2 - We present a novel technique based on incoherent optical frequency domain reflectometry (OFDR) to measure length changes quasi-distributed between reflection points in optical fibres. The technique enables length changes to be measured with a resolution better than 1 µm and allows for static and dynamic measurement capabilities up to 2 kHz. We demonstrate that dynamic measurements of multiple fibre sections can be conducted independently from each other with high precision. Due to the precise and dynamic measurement capabilities, the proposed sensor system is expected to open new fields of application, especially in the structural-health-monitoring sector. Possible applications are discussed in the paper. T2 - EURODYN 2011 - 8th International conference on structural dynamics CY - Leuven, Belgium DA - 04.07.2011 KW - Distributed sensor KW - Strain sensor KW - Optical fiber sensor KW - Structural health monitoring KW - OFDR KW - Length change measurement KW - Dynamic sensor PY - 2011 SN - 978-90-760-1931-4 SP - 2097 EP - 2102 AN - OPUS4-24347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liehr, Sascha A1 - Krebber, Katerina T1 - A dynamic fiber optic strain and power change sensor N2 - A dynamic and quasi-distributed sensor principle for simultaneous measurement of length changes and optical power changes between reflection points in an optical fiber is presented. The technique is based on the incoherent optical frequency domain reflectometry (I-OFDR). Length change resolutions < 1 µm and measurement repetition rates up to 2 kHz can be achieved using standard single-mode and multi-mode optical fibers. Simultaneous length change and refractive index measurement as well as field test results showing the deformation of a masonry building under seismic load are presented. Promising fields of application for this technique are the structural health monitoring sector and chemical process control. T2 - 21st International conference on optical fibre sensors CY - Ottawa, Canada DA - 15.05.2011 KW - Distributed sensor KW - Strain sensor KW - Optical fiber sensor KW - Structural health monitoring KW - OFDR KW - Dynamic sensor PY - 2011 SN - 978-0-8194-8246-4 U6 - https://doi.org/10.1117/12.884577 VL - 7753 SP - 775351-1 EP - 775351-4 AN - OPUS4-24266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liehr, Sascha A1 - Krebber, Katerina T1 - Phase-OFDR for Distributed Disturbance Measurement N2 - We introduce the optical frequency domain reflectometry (OFDR) technique based on intensity modulation frequency sweep measurement for distributed disturbance measurement in optical fibres. By evaluating interferometric Rayleigh scattering changes along the fibre, strain and temperature changes are detected with 100 nε sensitivity and 10 mK resolution. The vibration frequencies for low frequencies and up to the kHz-range can be obtained from power change Evaluation in the spatial domain. This novel OFDR approach is a low-cost alternative for distributed disturbance measurement up to distances of several kilometres. T2 - Sixth European Workshop on Optical Fibre Sensors CY - Limerick, Ireland DA - 31.05.2016 KW - Temperature sensing KW - OFDR KW - Distributed sensor KW - Rayleigh scattering KW - Strain measurement PY - 2016 UR - http://proceedings.spiedigitallibrary.org/conferenceproceedings.aspx U6 - https://doi.org/doi:10.1117/12.2236851 SN - 0277-786X VL - Vol. 9916 SP - Paper 991624, 4 PB - SPIE CY - Bellingham, Washington USA AN - OPUS4-37228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krebber, Katerina A1 - Lenke, Philipp A1 - Liehr, Sascha A1 - Nöther, Nils A1 - Wendt, Mario A1 - Wosniok, Aleksander ED - Santos, J.L. ED - Culshaw, B. ED - López-Higuera, J.M. ED - MacPherson, W.N. T1 - Distributed fiber optic sensors embedded in technical textiles for structural health monitoring N2 - Technical textiles with embedded distributed fiber optic sensors have been developed for the purposes of structural health monitoring in geotechnical and civil engineering. The distributed fiber optic sensors are based on Brillouin scattering in silica optical fibers and OTDR in polymer optical fibers. Such "smart" technical textiles can be used for reinforcement of geotechnical and masonry structures and the embedded fiber optic sensors can provide information about the condition of the structures and detect the presence of any damages and destructions in real time. Thus, structural health monitoring of critical geotechnical and civil infrastructures can be realized. The paper highlights the results achieved in this innovative field in the framework of several German and European projects. T2 - 4th European workshop on optical fibre sensors CY - Porto, Portugal DA - 2010-09-08 KW - Fiber optic sensor KW - Distributed sensor KW - Brillouin sensor KW - Polymer optical fibers (POF) KW - POF sensor KW - POF OTDR KW - Strain sensor KW - Technical textiles KW - Geotextiles PY - 2010 SN - 978-0-8194-8083-5 U6 - https://doi.org/10.1117/12.868052 SN - 0277-786X N1 - Serientitel: Proceedings of SPIE – Series title: Proceedings of SPIE IS - 7653 SP - 76530A-1 - 76530A-12 PB - SPIE, the International Society for Optical Engineering CY - Bellingham, Wash. AN - OPUS4-21948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wosniok, Aleksander A1 - Liehr, Sascha T1 - Health monitoring of geotechnical structures by distributed fiber optic sensors N2 - Health monitoring of ground movement via highly sensitive fiber optic sensors allows operators to detect early potential or ongoing failures in critical geotechnical structures. Particularly, the fiber optic sensors can be embedded in geosynthetics which are nowadays widely used in many geotechnical applications including earth dikes, railway embankments, landfill liners, quarries and mines. Thereby, such smart geosynthetics can be used for reinforcement, layer separation, filtration or drainage while the embedded fiber optic sensors provide information about the condition of the geotechnical structures in real time. The paper highlights the results achieved in this innovative field in the framework of several German and European projects. The presented measurement methods for long-term monitoring are based on Brillouin scattering in silica glass optical fibers (GOFs) and optical time domain reflectometry (OTDR) in polymer optical fibers (POFs). T2 - AMA Conferences 2017 Sensor 2017 CY - Nürnberg, Germany DA - 30.05.2017 KW - Fiber optic sensor KW - Distributed sensor KW - Smart geosynthetics KW - Brillouin sensor KW - OTDR PY - 2017 SN - 978-3-9816876-4-4 U6 - https://doi.org/10.5162/sensor2017/B7.4 SP - 280 EP - 285 PB - AMA Service GmbH CY - Wunstorf AN - OPUS4-40514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -