TY - GEN A1 - Krüger, Jörg A1 - Lenzner, Matthias A1 - Martin, Sven A1 - Lenner, M. A1 - Spielmann, C. A1 - Fiedler, A. A1 - Kautek, Wolfgang ED - Phipps, C. R. T1 - Femtosecond laser induced damage in absorbing filters used for laser protection N2 - Damage experiments of absorbing filters (Schott BG18 and BG36) were performed with Ti:sapphire laser pulses with durations from 30 fs to 340 fs (800 nm, 1 kHz) in air. The direct focusing technique was employed under single- and multi-pulse irradiation conditions. Ablation threshold fluences were determined from a semi-logarithmic plot of the ablation crater diameter vs. laser fluence. The damage threshold fluence decreases for shorter pulse durations. In the investigated pulse duration range, the measured multi-pulse ablation threshold fluences are practically similar to those of undoped glass material (~1 Jcm-2). That means that the multi-pulse ablation threshold is independent on the doping level of the filters. For more than 100 pulses per spot and all pulse durations applied, the threshold fluence saturates. This leads to technically relevant damage threshold values in the femtosecond laser pulse duration domain. T2 - 4th SPIE's International Conference on High-Power Laser Ablation CY - Taos, NM, USA DA - 2002-04-22 KW - Ablation KW - Damage KW - Eye protection KW - Femtosecond pulse laser KW - Incubation KW - Laser safety KW - Threshold fluence PY - 2002 SN - 0-8194-4524-X U6 - https://doi.org/10.1117/12.482109 SN - 1605-7422 N1 - Serientitel: SPIE proceedings series – Series title: SPIE proceedings series VL - 1 IS - 4760 SP - 398 EP - 405 PB - SPIE CY - Bellingham, Wash. AN - OPUS4-1550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Jörg A1 - Lenzner, Matthias A1 - Martin, Sven A1 - Lenner, M. A1 - Spielmann, Ch. A1 - Fiedler, A. A1 - Kautek, Wolfgang T1 - Single- and multi-pulse femtosecond laser ablation of optical filter materials N2 - Ablation experiments employing Ti:sapphire laser pulses with durations from 30 to 340 fs (centre wavelength 800 nm, repetition rate 1 kHz) were performed in air. Absorbing filters (Schott BG18 and BG36) served as targets. The direct focusing technique was used under single- and multi-pulse irradiation conditions. Ablation threshold fluences were determined from a semi-logarithmic plot of the ablation crater diameter versus laser fluence. The threshold fluence decreases for a shorter pulse duration and an increasing number of pulses. The multi-pulse ablation threshold fluences are similar to those of undoped glass material (~1 J cm-2). That means that the multi-pulse ablation threshold is independent on the doping level of the filters. For more than 100 pulses per spot and all pulse durations applied, the threshold fluence is practically constant. This leads to technically relevant ablation threshold values. KW - Damage KW - Femtosecond laser ablation KW - Filter KW - Incubation KW - Laser safety KW - Threshold PY - 2003 U6 - https://doi.org/10.1016/S0169-4332(02)01389-2 SN - 0169-4332 SN - 1873-5584 VL - 208-209 SP - 233 EP - 237 PB - North-Holland CY - Amsterdam AN - OPUS4-11545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -