TY - CONF A1 - Kautek, Wolfgang A1 - Martin, Sven A1 - Krüger, Jörg A1 - Lenzner, Matthias A1 - Fiedler, A. ED - Meunier, M. T1 - Femtosecond laser multi-pulse interaction with optical filters and fabrics T2 - Physics and chemistry of advanced laser materials processing N2 - Optical filters and fabrics are important parts of laser safety equipment such as goggles and curtains. A choice of these materials with varying absorption spectra is investigated with respect to their resistance to Ti:sapphire femtosecond laser radiation (800 nm wavelength, 1 kHz repetition rate). Pulse durations down to 30 fs and multiple-pulse irradiation conditions are employed to evaluate technically relevant damage thresholds. The ablation threshold fluences of the absorbing filters are comparable to those observed for transparent materials with 30-fs-pulses. These investigations together with scanning electron microscopy of the surface morphology after laser treatment provide insight into the interaction mechanism of the short pulses with the materials. T2 - Symposium D - European Materials Research Society CY - Strasbourg, France DA - 2002-06-18 PY - 2002 UR - http://www.emrs-strasbourg.com/files/pdf/2002_SPRING/02_Prog_Dv2.pdf N1 - Serientitel: Applied surface science – Series title: Applied surface science VL - 208/209.2003,1 IS - 1 SP - 1(?) PB - Elsevier CY - Amsterdam AN - OPUS4-1730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Krüger, Jörg A1 - Lenzner, Matthias A1 - Martin, Sven A1 - Lenner, M. A1 - Spielmann, C. A1 - Fiedler, A. A1 - Kautek, Wolfgang ED - Phipps, C. R. T1 - Femtosecond laser induced damage in absorbing filters used for laser protection T2 - High-power laser ablation IV N2 - Damage experiments of absorbing filters (Schott BG18 and BG36) were performed with Ti:sapphire laser pulses with durations from 30 fs to 340 fs (800 nm, 1 kHz) in air. The direct focusing technique was employed under single- and multi-pulse irradiation conditions. Ablation threshold fluences were determined from a semi-logarithmic plot of the ablation crater diameter vs. laser fluence. The damage threshold fluence decreases for shorter pulse durations. In the investigated pulse duration range, the measured multi-pulse ablation threshold fluences are practically similar to those of undoped glass material (~1 Jcm-2). That means that the multi-pulse ablation threshold is independent on the doping level of the filters. For more than 100 pulses per spot and all pulse durations applied, the threshold fluence saturates. This leads to technically relevant damage threshold values in the femtosecond laser pulse duration domain. T2 - 4th SPIE's International Conference on High-Power Laser Ablation CY - Taos, NM, USA DA - 2002-04-22 KW - Ablation KW - Damage KW - Eye protection KW - Femtosecond pulse laser KW - Incubation KW - Laser safety KW - Threshold fluence PY - 2002 SN - 0-8194-4524-X DO - https://doi.org/10.1117/12.482109 SN - 1605-7422 N1 - Serientitel: SPIE proceedings series – Series title: SPIE proceedings series VL - 1 IS - 4760 SP - 398 EP - 405 PB - SPIE CY - Bellingham, Wash. AN - OPUS4-1550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Lenzner, Matthias T1 - Modification and Ablation of Semiconductors by Femtosecond Laser Pulses JF - Recent research developments in applied physics N2 - Physical and chemical phenomena resulting from irradiation of silicon and indium phosphide with ultrashort laser pulses (~100fs) were investigated with respect to the difference between single- and multiple-pulse treatment. In the single-pulse case, several processes were identified: modification, recrystallization and ablation. All processes exhibit a distinct treshold behaviour. A two photon-absorption coefficient can be determined from a single spatial ablation profile. Accumulation effects were observed for multi-pulse illumination. Different morphological features like bubbles, rippels and microcolumns were found. PY - 2002 VL - 5 IS - 2 SP - 437 EP - 461 PB - Transworld Research Network CY - Trivandrum AN - OPUS4-1585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kautek, Wolfgang A1 - Krüger, Jörg A1 - Lenzner, Matthias A1 - Martin, Sven A1 - Lenner, M. A1 - Spielmann, C. A1 - Fiedler, A. ED - Meunier, M. T1 - Single- and multi-pulse femtosecond laser ablation of optical filter materials T2 - Physics and chemistry of advanced laser materials processing N2 - Commercially available absorption filters (Schott BG18 and BG36) were investigated with respect to their single- and multi-pulse ablation threshold using laser pulses from a Ti:Sapphire laser in the range between 30 and 340 fs. It could be observed, that the threshold fluence decreases for shorter pulse durations. The similarity of the measured multi-pulse threshold fluences with those of undoped glass material (around 1 J/cm^2 for a pulse duration of 30 fs) suggests that, for very short pulses, the threshold is independent on the doping level and therefore, linear absorption does not significantly contribute to laser-induced damage. For >100 pulses per spot and all pulse durations applied, the threshold fluences saturate. This independence on the number of applied pulses leads to technically relevant damage threshold values. T2 - Symposium D - European Materials Research Society CY - Strasbourg, France DA - 2002-06-18 PY - 2002 UR - http://www.emrs-strasbourg.com/files/pdf/2002_SPRING/02_Prog_Dv2.pdf N1 - Serientitel: Applied surface science – Series title: Applied surface science VL - 208/209.2003,1 IS - 1 SP - 1(?) PB - Elsevier CY - Amsterdam AN - OPUS4-1588 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Baudach, Steffen A1 - Krüger, Jörg A1 - Kautek, Wolfgang A1 - Lenzner, Matthias T1 - Femtosecond laser ablation of silicon-modification thresholds and morphology JF - Applied physics A N2 - We investigated the initial modification and ablation of crystalline silicon with single and multiple Ti:sapphire laser pulses of 5 to 400 fs duration. In accordance with earlier established models, we found the phenomena amorphization, melting, re-crystallization, nucleated vaporization, and ablation to occur with increasing laser fluence down to the shortest pulse durations. We noticed new morphological features (bubbles) as well as familiar ones (ripples, columns). A nearly constant ablation threshold fluence on the order of 0.2 J/cm2 for all pulse durations and multiple-pulse irradiation was observed. For a duration of ,100 fs, significant incubation can be observed, whereas for 5 fs pulses, the ablation threshold does not depend on the pulse number within the experimental error. For micromachining of silicon, a pulse duration of less than 500 fs is not advantageous. PY - 2002 DO - https://doi.org/10.1007/s003390100893 SN - 0947-8396 VL - 74 IS - 1 SP - 19 EP - 25 PB - Springer CY - Berlin AN - OPUS4-6328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jeschke, H.O. A1 - Garcia, M.E. A1 - Lenzner, Matthias A1 - Bonse, Jörn A1 - Krüger, Jörg A1 - Kautek, Wolfgang T1 - Laser ablation thresholds of silicon for different pulse durations: theory and experiment JF - Applied surface science N2 - The ultrafast laser ablation of silicon has been investigated experimentally and theoretically. The theoretical description is based on molecular dynamics (MD) simulations combined with a microscopic electronic model. We determine the thresholds of melting and ablation for two different pulse durations =20 and 500 fs. Experiments have been performed using 100 Ti:Sap-phire laser pulses per spot in air environment. The ablation thresholds were determined for pulses with a duration of 25 and 400 fs, respectively. Good agreement is obtained between theory and experiment. KW - Laser ablation KW - Pulse duration KW - Threshold of silicon PY - 2002 DO - https://doi.org/10.1016/S0169-4332(02)00458-0 SN - 0169-4332 SN - 1873-5584 VL - 197-198 SP - 839 EP - 844 PB - North-Holland CY - Amsterdam AN - OPUS4-6314 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -