TY - JOUR A1 - Nasr Esfahani, M. A1 - Zare Pakzad, S. A1 - Li, T. A1 - Li, X. A1 - Tasdemir, Z. A1 - Wollschläger, Nicole A1 - Leblebici, Y. A1 - Erdem Alaca, B. T1 - Effect of Native Oxide on Stress in Silicon Nanowires: Implications for Nanoelectromechanical Systems N2 - Understanding the origins of intrinsic stress in Si nanowires (NWs) is crucial for their successful utilization as transducer building blocks in next-generation, miniaturized sensors based on anoelectromechanical systems (NEMS). With their small size leading to ultrahigh-resonance frequencies and extreme surface-to-volume ratios, silicon NWs raise new opportunities regarding sensitivity, precision, and speed in both physical and biochemical sensing. With silicon optoelectromechanical properties strongly dependent on the level of NW intrinsic stress, various studies have been devoted to the measurement of such stresses generated, for example, as a result of harsh fabrication processes. However, due to enormous NW surface area, even the native oxide that is conventionally considered as a benign surface condition can cause significant stresses. To address this issue, a combination of nanomechanical characterization and atomistic simulation approaches is developed. Relying only on low-temperature processes, the fabrication approach yields monolithic NWs with optimum boundary conditions, where NWs and support architecture are etched within the same silicon crystal. Resulting NWs are characterized by transmission electron microscopy and micro-Raman spectroscopy. The interpretation of results is carried out through molecular dynamics simulations with ReaxFF potential facilitating the incorporation of humidity and temperature, thereby providing a close replica of the actual oxidation environment - in contrast to previous dry oxidation or self-limiting thermal oxidation studies. As a result, consensus on significant intrinsic tensile stresses on the order of 100 MPa to 1 GPa was achieved as a function of NW critical dimension and aspect ratio. The understanding developed herein regarding the role of native oxide played in the generation of NW intrinsic stresses is important for the design and development of silicon-based NEMS. KW - Nanoelectromechanical systems (NEMS) KW - Silicon nanowires KW - Native oxide KW - Intrinsic stress KW - Raman spectroscopy PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-560471 SN - 2574-0970 VL - 5 SP - 13276 EP - 13285 PB - ACS Publ. CY - Washington, DC AN - OPUS4-56047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wollschläger, Nicole A1 - Tasdemir, Z. A1 - Häusler, Ines A1 - Leblebici, Y. A1 - Österle, Werner A1 - Alaca, B. E. T1 - Determination of the elastic behavior of silicon nanowires within a scanning electron microscope N2 - Three-point bending tests were performed on double-anchored, <110> silicon nanowire samples inside a scanning electron microscope (SEM) via a micromanipulator equipped with a piezo-resistive force sensor. Representing the upper and lower boundaries achievable in a consistent manner, silicon nanowires with widths of 35 nm and 74 nm and a height of 168 nm were fabricated. The nanowires were obtained monolithically along with their 10-m-tall supports through a top-down fabrication approach involving a series of etching processes. Hence, no interface compliance was introduced between supports and nanowires. Exact nanowire dimensions and cross-sectional features were determined by transmission electron microscopy (TEM) following sample preparation through focused ion beam (FIB) machining. Conducting the experiments inside an SEM chamber further raised the opportunity of the direct observation of any deviation from ideal loading conditions such as twisting, which was taken into consideration in simulations. Measured force-displacement behavior was observed to exhibit close resemblance to simulation results obtained by finite element modeling, when the bulk value of 169 GPa was taken as the modulus of elasticity for <110> silicon. Hence, test results show neither any size effect nor evidence of residual stresses for the considered nanoscale objects. The increased effect of the native oxide with reduced nanowire dimensions was captured as well. Thus this very simple in-situ testing method was found to be an alternative to elaborate AFM measurements on geometrically formidable nanostructures. The results demonstrate the applicability of the developed fabrication approach to the incorporation of silicon nanowires in functional micromechanical devices. KW - Silicon nanowire KW - Elastic behavior KW - Scanning electron microscope KW - Mechanical properties PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-370383 VL - 2016 SP - Article 4905838, 1 EP - 6 PB - Hindawi Publishing Corporation AN - OPUS4-37038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yilmaz, M. A1 - Wollschläger, Nicole A1 - Esfahani, M. N. A1 - Österle, Werner A1 - Leblebici, Y. A1 - Alaca, B. E. T1 - Superplastic behavior of silica nanowires obtained by direct patterning of silsesquioxane-based precursors N2 - Silica nanowires spanning 10 μm-deep trenches are fabricated from different types of silsesquioxane-based precursors by direct e-beam patterning on silicon followed by release through deep reactive ion etching. Nanowire aspect ratios as large as 150 are achieved with a critical dimension of about 50 nm and nearly rectangular cross-sections. In situ bending tests are carried out inside a scanning electron microscope, where the etch depth of 10 mm provides sufficient space for deformation. Silica NWs are indeed observed to exhibit superplastic behavior without fracture with deflections reaching the full etch depth, about two orders of magnitude larger than the nanowire thickness. A large-deformation elastic bending model is utilized for predicting the deviation from the elastic behavior. The results of forty different tests indicate a critical stress level of 0.1–0.4 GPa for the onset of plasticity. The study hints at the possibility of fabricating silica nanowires in a monolithic Fashion through direct e-beam patterning of silsesquioxane-based resins. The fabrication technology is compatible with semiconductor manufacturing and provides silica nanowires with a very good structural integrity. KW - Silica nanowires KW - HSQ KW - Superplasticity KW - In situ bending tests PY - 2017 U6 - https://doi.org/10.1088/1361-6528/aa5b80 SN - 0957-4484 SN - 1361-6528 VL - 28 IS - 11 SP - Article 115302, 1 EP - 10 AN - OPUS4-39166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tasdemir, Z. A1 - Wollschläger, Nicole A1 - Österle, Werner A1 - Leblebici, Y. A1 - Alaca, B. E. T1 - A deep etching mechanism for trench-bridging silicon nanowires N2 - Introducing a single silicon nanowire with a known orientation and dimensions to a specific layout location constitutes a major challenge. The challenge becomes even more formidable, if one chooses to realize the task in a monolithic fashion with an extreme topography, a characteristic of microsystems. The need for such a monolithic integration is fueled by the recent surge in the use of silicon nanowires as functional building blocks in various electromechanical and optoelectronic applications. This challenge is addressed in this work by introducing a top-down, silicon-on-insulator technology. The technology provides a pathway for obtaining well-controlled silicon nanowires along with microstructures up to a three-order-of-magnitude scale difference. A two-step etching process is developed, where the first shallow etch defines a nanoscale protrusion on the wafer surface. After applying a conformal protection on the protrusion, a deep etch step is carried out forming the surrounding microscale features. A minimum nanowire cross-section of 35 nm by 168 nm is demonstrated in the presence of an etch depth of 10 m. All cross-sectional features are characterized via transmission electron microscopy and linked to specific process steps. The technology allows control on all dimensional aspects along with the exact location and orientation of the silicon nanowire. KW - Silicon nanowire KW - Deep reactive ion etching KW - Transmission electron microscopy PY - 2016 U6 - https://doi.org/10.1088/0957-4484/27/9/095303 SN - 0957-4484 SN - 1361-6528 VL - 27 IS - 9 SP - 095303-1 EP - 095303-8 PB - IOP Publishing AN - OPUS4-35789 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yilmaz, M. A1 - Kilinc, Y. A1 - Nadar, G. A1 - Tasdemir, Z. A1 - Wollschläger, Nicole A1 - Österle, Werner A1 - Leblebici, Y. A1 - Alaca, B. E. T1 - Top-down technique for scaling to nano in silicon MEMS N2 - Nanoscale building blocks impart added functionalities to microelectromechanical systems (MEMS). The integration of silicon nanowires with MEMS-based sensors leading to miniaturization with improved sensitivity and higher noise immunity is one example highlighting the advantages of this multiscale approach. The accelerated pace of research in this area gives rise to an urgent need for batch-compatible solutions for scaling to nano. To address this challenge, a monolithic fabrication approach of silicon nanowires with 10-lm-thick silicon-on-insulator (SOI) MEMS is developed in this work. A two-step Si etching approach is adopted, where the first step creates a shallow surface protrusion and the second step releases it in the form of a nanowire. It is during this second deep etching step that MEMS—with at least a 2-order-of-magnitude scale difference - is formed as well. The technique provides a pathway for preserving the lithographic resolution and transforming it into a very high mechanical precision in the assembly of micro- and nanoscales with an extreme topography. Validation of the success of integration is carried out via in situ actuation of MEMS inside an electron microscope loading the nanowire up to its fracture. The technique yields nanowires on the top surface of MEMS, thereby providing ease of access for the purposes of carrying out surface processes such as doping and contact formation as well as in situ observation. As the first study demonstrating such monolithic integration in thick SOI, the work presents a pathway for scaling down to nano for future MEMS combining multiple scales. KW - Nanowires KW - Silicon KW - Top-down KW - MEMS PY - 2017 U6 - https://doi.org/10.1116/1.4978047 SN - 1071-1023 VL - 35 IS - 2 SP - 022001-1 EP - 022001-7 PB - America Vacuum Society AN - OPUS4-39370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zare Pakzad, S. A1 - Nasr Esfahani, M. A1 - Tasdemir, Z. A1 - Wollschläger, Nicole A1 - Li, T. A1 - Li, X. A1 - Yilmaz, M. A1 - Leblebici, Y. A1 - Erdem Alaca, B. T1 - Nanomechanical Modeling of the Bending Response of Silicon Nanowires N2 - Understanding the mechanical behavior of silicon nanowires is essential for the implementation of advanced nanoscale devices. Although bending tests are predominantly used for this purpose, their findings should be properly interpreted through modeling. Various modeling approaches tend to ignore parts of the effective parameter set involved in the rather complex bending response. This oversimplification is the main reason behind the spread of the modulus of elasticity and strength data in the literature. Addressing this challenge, a surface-based nanomechanical model is introduced in this study. The proposed model considers two important factors that have so far remained neglected despite their significance: (i) intrinsic stresses composed of the initial residual stress and surface-induced residual stress and (ii) anisotropic implementation of surface stress and elasticity. The modeling study is consolidated with molecular dynamics-based study of the native oxide surface through reactive force fields and a series of nanoscale characterization work through in situ threepoint bending test and Raman spectroscopy. The treatment of the test data through a series of models with increasing complexity demonstrates a spread of 85 GPa for the modulus of elasticity and points to the origins of ambiguity regarding silicon nanowire properties, which are some of the most commonly employed nanoscale building blocks. A similar conclusion is reached for strength with variations of up to 3 GPa estimated by the aforementioned nanomechanical models. Precise consideration of the nanowire surface state is thus critical to comprehending the mechanical behavior of silicon nanowires accurately. Overall, this study highlights the need for a multiscale theoretical framework to fully understand the size-dependent mechanical behavior of silicon nanowires, with fortifying effects on the design and reliability assessment of future nanoelectromechanical systems. KW - Silicon nanowires KW - Native oxide KW - Surface stress KW - Surface elasticity KW - Mechanical behavior PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-581676 SP - 1 EP - 14 PB - ACS Publications AN - OPUS4-58167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -