TY - JOUR A1 - Behnke, Thomas A1 - Laux, Eva-Maria A1 - Hoffmann, Katrin A1 - Peters, S. A1 - Haueisen, J. A1 - Klemm, M. A1 - Resch-Genger, Ute T1 - Simple approaches to fluorescence lifetime standards using dye-quencher pairs JF - Biomedizinische Technik = Biomedical engineering N2 - Photoluminescence techniques are amongst the most widely used tools in the material and life sciences, with new and exciting applications continuously emerging. Advantages include their comparative ease of use, unique sensitivity, non-invasive character, and potential for multiplexing, remote sensing, and miniaturization. Increasing applications of fluorescence techniques in the life sciences and emerging medical applications of fluorescence microscopic techniques including 1P and 2P fluorescence microscopy combined with fluorescence lifetime imaging (FLIM) in e.g. in vivo eye diagnostics boosted the demand for robust, easy-to-use, and reliable fluorescence standards to ensure the reliability and comparability of fluorescence data. This includes fluorescence standards for the consideration of instrument-specific spectral and intensity distortions of measured signals and instrument performance validation, fluorescence intensity standards for the quantification of measured intensities and for signal referencing, and lately, also fluorescence lifetime standards. T2 - BMT 2012 - 46. DGBMT Jahrestagung CY - Jena, Germany DA - 16.09.2012 PY - 2012 DO - https://doi.org/10.1515/bmt-2012-4499 SN - 0013-5585 SN - 1862-278X VL - 57 IS - Suppl. 1 SP - 613 PB - De Gruyter CY - Berlin AN - OPUS4-27682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Behnke, Thomas A1 - Würth, Christian A1 - Laux, Eva-Maria A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute T1 - Simple strategies towards bright polymer particles via one-step staining procedures JF - Dyes and pigments N2 - In order to develop simple and versatile procedures for the preparation of red emissive particles, various one-step swelling procedures for the loading of fluorophores into nanometer- and micrometer-sized polystyrene particles were systematically assessed. Parameters studied for model dyes from common dye classes include the composition of the swelling medium, dye charge and polarity, dye concentration, and particle surface chemistry. The dye loading procedures were compared based upon the efficiency of dye incorporation, fluorescence intensity, and colloidal stability of the resulting particles as well as the absence of dye leaking as determined by absorption and fluorescence spectroscopy, flow cytometry, and measurements of zeta potentials. In addition, for the first time, the influence of the amount of incorporated dye on the absolute fluorescence quantum yield and brightness of the fluorescent particles was investigated for selected chromophores in differently sized particles using a custom-made calibrated integrating sphere setup. Our results demonstrate the general suitability of these one-step loading procedures for efficient particle staining with neutral, zwitterionic, and charged fluorophores like oxazines, coumarines, squaraines, xanthenes, and cyanines emitting in the visible and near infrared. Dye polarity was identified as a suitable tool to estimate the loading efficiency of fluorophores into these polymer particles. KW - Fluorescence KW - Polystyrene KW - Particles KW - Encapsulation KW - Quantum yield KW - Zeta potential KW - Method KW - Label KW - Particle KW - Polymer KW - Absolute fluorescence quantum yield KW - Fluorophore KW - Dye content KW - Surface groups KW - Size KW - Brightness PY - 2012 DO - https://doi.org/10.1016/j.dyepig.2012.01.021 SN - 0143-7208 SN - 1873-3743 VL - 94 IS - 2 SP - 247 EP - 257 PB - Elsevier Ltd. CY - Kidlington AN - OPUS4-25481 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Laux, Eva-Maria A1 - Behnke, Thomas A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute T1 - Keeping particles brilliant - simple methods for the determination of the dye content of fluorophore-loaded polymeric particles JF - Analytical methods N2 - One of the most active research areas in the life and material sciences is the design and synthesis of fluorescent nano- and micrometre sized particles for applications e.g. as labels, sensor systems, and platforms for fluorescence assays or barcoding materials. The reliable and reproducible fabrication of such particles as well as many applications require accurate, simple, and versatile procedures for the determination of the dye content per particle which affects e.g. the brightness of these materials and their surface charge and thus, colloidal stability. Here, four fast and inexpensive spectroscopic methods for the quantification of the fluorophore content of beads are presented and compared for nanometre- and micrometre sized polystyrene particles loaded or labeled with commercial fluorophores, differing in dye class, charge, and hydrophilicity. This included the determination of the amount of incorporated dye from absorption spectra of bead suspensions, via dissolving of the polymer matrix, via extraction of the polymer matrix, and from the supernatant of the swelling solution or reaction mixture. Method validation was performed with a sulfur-containing dye and elemental analysis. Based upon this method comparison and the accomplishable uncertainties, two reliable strategies for particle characterization and bead process control are identified that can be easily extended to other materials. PY - 2012 DO - https://doi.org/10.1039/c2ay05822g SN - 1759-9660 SN - 1759-9679 VL - 4 IS - 6 SP - 1759 EP - 1768 PB - RSC Publ. CY - Cambridge AN - OPUS4-26051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -