TY - JOUR A1 - Müller, Bernd R. A1 - Cooper, R.C. A1 - Lange, Axel A1 - Kupsch, Andreas A1 - Wheeler, M. A1 - Hentschel, Manfred P. A1 - Staude, Andreas A1 - Pandey, A. A1 - Shyam, A. A1 - Bruno, Giovanni T1 - Stress-induced microcrack density evolution in β-eucryptite ceramics: Experimental observations and possible route to strain hardening JF - Acta Materialia N2 - In order to investigate their microcracking behaviour, the microstructures of several β-eucryptite ceramics, obtained from glass precursor and cerammed to yield different grain sizes and microcrack densities, were characterized by laboratory and synchrotron x-ray refraction and tomography. Results were compared with those obtained from scanning electron microscopy (SEM). In SEM images, the characterized materials appeared fully dense but computed tomography showed the presence of pore clusters. Uniaxial tensile testing was performed on specimens while strain maps were recorded and analyzed by Digital Image Correlation (DIC). X-ray refraction techniques were applied on specimens before and after tensile testing to measure the amount of the internal specific surface (i.e., area per unit volume). X-ray refraction revealed that (a) the small grain size (SGS) material contained a large specific surface, originating from the grain boundaries and the interfaces of TiO2 precipitates; (b) the medium (MGS) and large grain size (LGS) materials possessed higher amounts of specific surface compared to SGS material due to microcracks, which decreased after tensile loading; (c) the precursor glass had negligible internal surface. The unexpected decrease in the internal surface of MGS and LGS after tensile testing is explained by the presence of compressive regions in the DIC strain maps and further by theoretical arguments. It is suggested that while some microcracks merge via propagation, more close mechanically, thereby explaining the observed X-ray refraction results. The mechanisms proposed would allow the development of a strain hardening route in ceramics. KW - Beta-eucryptite KW - Microcracked ceramics KW - X-ray refraction KW - Tensile load KW - Strain hardening KW - Synchrotron KW - BAMline KW - Computed Tomography KW - CT PY - 2018 UR - http://www.sciencedirect.com/science/article/pii/S1359645417308881 DO - https://doi.org/10.1016/j.actamat.2017.10.030 SN - 1359-6454 SN - 1873-2453 VL - 144 IS - Supplement C SP - 627 EP - 641 PB - Elsevier B.V. AN - OPUS4-43024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Evsevleev, Sergei A1 - Müller, Bernd R. A1 - Lange, Axel A1 - Kupsch, Andreas T1 - Refraction driven X-ray caustics at curved interfaces JF - Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment N2 - X-ray refraction related interaction has received rising interest since about two decades in the field of imaging, beam shaping and analysis although being discovered a century ago. Due to refraction at interfaces in inhomogeneous media X-rays undergo natural focusing (or defocusing) of waves, revealing caustics. Such Kind of intensity patterns are well-known for visible light, but have been sparsely discussed for X-rays. The Variation of irradiation density may be predicted in case of known shapes. Analogously to light optics, the intensity distributions cover several orders of magnitude including complete extinction. The partly convergent (and divergent) caustic stripes originate from narrow zones of typical size of some 10−6 of the boundary curvature radius. For the deflection of plane wave synchrotron radiation (energy in the range of some keV to some ten keV) at rods and tubes of several μm diameter, we find good Agreement between experiments and modeling by ray tracing according to Snell’s law without additional diffraction contributions. Apart from Basic Research implications, caustics may influence the performance of irradiation technologies such as sterilization or molecular cross-linking. KW - X-ray caustics KW - X-ray refraction KW - Irradiation KW - Radiation shielding KW - Synchrotron Radiation PY - 2019 UR - http://www.sciencedirect.com/science/article/pii/S0168900218314591 DO - https://doi.org/10.1016/j.nima.2018.10.152 SN - 0168-9002 SN - 1872-9576 VL - 916 SP - 275 EP - 282 PB - Elsevier AN - OPUS4-46924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -