TY - CONF A1 - Kutz, Philipp A1 - Otremba, Frank A1 - Werner, Jan A1 - Sklorz, Christian T1 - Development of a Single Walled Tank under Cryogenic Conditions made of Composite N2 - The use of glass-fiber reinforced plastic (GRP) can reduce the weight of tanks significantly. By replacing steel with GRP in tanks for gases (propane, etc.) a weight reduction of up to 50 % was reached. In this project not only the material should be optimized, but also the design. Previous tanks consist of a double-walled structure with an insulation layer between the two shells (e.g. vacuum). Goal of this project is to realize a single-walled construction of GRP with an insulation layer on the outside. To determine the temperature dependent material values, two different experiments are performed: In the first experiment, temperature dependent material properties of liquid nitrogen found in literature research are validated in a simple setup. The level of liquid nitrogen in a small jar is measured over the experiment time. Numerical simulation shows the change of nitrogen level with sufficient precision. In the second experiment, a liquid nitrogen is applied on one side of a GRP plate. Temperature is measured with thermocouples on top and bottom of the GRP plate, as well as in the middle of the plate. By use of numerical simulation, temperature dependent thermal conductivity is determined. In the third experiment, a test stand is designed to examine different insulation materials. In this test stand, the insulation material can easily be changed. A numerical simulation, in which the determined material data is used, is performed as well for this test stand. The experiments show, that GRP can be used in cryogenic environments. Multiphase simulations are a suitable tool to describe the energy absorption of thermal energy due to thermal phase change. Results on different insulation materials will follow. T2 - IMECE 2018 CY - Pittsburgh, PA, USA DA - 09.11.2018 KW - Lightweight design KW - Thermal properties of GRP KW - Liquid nitrogen KW - LNG PY - 2018 UR - http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleID=2722335 SN - 978-0-7918-5214-9 U6 - https://doi.org/10.1115/IMECE2018-86365 VL - 9 SP - V009T12A019 PB - ASME AN - OPUS4-47321 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kutz, Philipp A1 - Otremba, Frank A1 - Werner, Jan T1 - Mechanical and Thermal Properties of Composite Material and Insulation for a Single Walled Tank for Cryogenic Liquids N2 - This paper describes the testing methods used to determine the thermal properties of insulation materials and mechanical properties of materials used for the load-bearing structure for pressure tanks (up to 4 bar, relative) and cryogenic liquids (LNG, −166 °C to -157 °C at atmospheric pressure). Goal is to design a transportation tank that does not exceed 4 bars (relative) within 10 h, starting at atmospheric pressure. PUR-foam is a suitable material for the insulation. A 12,5 l small scale tank prototype reached 4 bar (relative) within 87 minutes, which is, regarding the influence of the size, a satisfying result. The mechanical properties change significantly at cryogenic temperatures. The bending modulus is similar at first, but decreases at a certain point by appr. 50 %. However, the maximum stress is much higher and could not be reached within this testing setup. T2 - 26th Assembly Advanced Materials Congress CY - Stockholm, Sweden DA - 10.06.2019 KW - GFRP KW - LNG KW - Lightweight design KW - Thermal properties KW - Mechanical prtoperties PY - 2020 U6 - https://doi.org/10.5185/amlett.2020.011457 VL - 11 IS - 1 SP - 1 EP - 6 PB - VBRI Press AN - OPUS4-50216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kutz, Philipp A1 - Werner, Jan A1 - Otremba, Frank T1 - Testing of Composite Material for Transport Tanks for LNG N2 - To reduce the emission of carbondyoxide (CO2) of combustion engines, liquefied natural gas (LNG) is used as an alternative fuel. LNG is transported via truck, ship or railway for long distances. Double walled stainless steel tanks are used for transportation, which are heavy and expensive. The vacuum insulation between the two walled structure ensures that the LNG stays liquid over the transportation time (boiling point of LNG: -162 ◦C). This causes a high temperature difference between the transported good and the ambient air. A simplified tank construction is used to reduce the weight and price of the tank. Instead of stainless steel, glass fiber reinforced plastic (GFRP) is used. The design is changed to a single walled construction with a solid insulation material outside on the GFRP structure. Goal of this work is the characterization of a suitable insulation material and configuration as well as the analysis of the mechanical properties of GFRP under cryogenic conditions. Several experiments are carried out. Numerical models of these experiments can then be used for parameter studies. KW - GFRP KW - Lightweight design KW - LNG PY - 2019 U6 - https://doi.org/10.4028/www.scientific.net/KEM.809.625 SN - 1662-9795 VL - 809 SP - 625 EP - 629 PB - Trans Tech Publications Ltd. AN - OPUS4-48271 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -