TY - CONF A1 - Kutz, Philipp A1 - Otremba, Frank A1 - Sklorz, Christian T1 - Multiphase simulation of liquid nitrogen for tank development N2 - Presentation of the results of different experiments and computations with Ansys Fluent and CFX. T2 - Seminar for students at the Technical University of Liberec CY - Liberec, Czech Republic DA - 13.06.2018 KW - LNG PY - 2018 AN - OPUS4-45172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kutz, Philipp A1 - Otremba, Frank A1 - Werner, Jan T1 - Mechanical and thermal properties of composite material and insulation for a single walled tank for cryogenic liquids N2 - This presentation describes the testing methods used to determine the thermal properties of insulation materials and mechanical properties of materials used for the load-bearing structure for pressure tanks (up to 4 bar) and cryogenic liquids (LNG, -162 °C at atmospheric pressure). Goal is to design a transportation tank that does not exceed 4 bars (relative) within 10 h, starting at atmospheric pressure. PUR-foam is a suitable material for the insulation. A 12,5 l small scale tank prototype reached 4 bar (relative) within 87 minutes, which is, regarding the influence of the size, a satisfying result. The mechanical properties change significantly at cryogenic temperatures. The bending modulus is similar at first, but decreases at a certain point by 2/3. However, the maximum stress is much higher and could not be reached within this testing setup. T2 - 26th Assembly Advanced Materials Congress CY - Stockholm, Sweden DA - 10.06.2019 KW - GFRP KW - Thermal properties of GFRP KW - Lightweight design PY - 2019 AN - OPUS4-48214 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kutz, Philipp T1 - Entwicklung einer einwandigen Transporteinheit aus GFK für kryogene Flüssigkeiten N2 - Präsentation im Rahmen eines BAM-internen Kolloquiums über den aktuellen Stand der Forschung im ZIM-Vorhaben "Tieftemperatzr-Transporteinheit aus Faserverbundkunststoffen" T2 - BAM-Kolloquium CY - Berlin, Germany DA - 10.10.2019 KW - LNG KW - GFRP KW - Lightweight design PY - 2019 AN - OPUS4-49276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kutz, Philipp A1 - Otremba, Frank A1 - Werner, Jan A1 - Sklorz, Christian T1 - Development of a single walled tank under cryogenic conditions made of composite N2 - To reduce the emission of CO2, liquified natural gas (LNG) is used as fuel. As the pipeline network is not developed all around the globe, LNG needs to be transported via ship or truck. Double-walled tanks made of steel with a vacuum insulation are currently used to keep LNG at cryogenic temperatures (-162 °C; 111 K). The double-walled construction makes the tanks heavy and expensive. Furthermore, there are some restriction to carry out in-service inspection using a double-wall design. Main topics: Lightweight design, superior thermal properties of GRP compared to steel Aim of this project is to develop a single-walled tank made of glass-fiber reinforced plastic (GRP) and an insulator, so that the tank pressure will not exceed 5 bar within a certain time, relative, as a result of the rising fluid temperature. First, the thermal and mechanical properties of GRP and the insulator at cryogenic temperatures must be determined. Liquid nitrogen (-196 °C; 77 K) is used for all experiments at cryogenic temperatures for safety reasons. Mechanical properties are analyzed by performing 3-point bending tests on cooled specimen. The tests show, that there are now significant changes on the mechanical properties of GRP, so that this material can be used in a cryogenic environment. To examine the thermal conductivity of GRP, a test rig is designed, in which one side of a GRP-laminate plate is cooled down while the other side is at room temperature at the beginning. Temperature is measured on both sides of the plate as well as inside the laminate. The temperature curves are then implemented in a ANSYS simulation to calculate thermal material properties. The experiments show, that the thermal conductivity of GRP is much lower than the one of steel, but still not low enough to design a single walled tank without an additional insulation. Therefore, a closed GRP pipe with insolation inside is immersed in liquid nitrogen for a defined time. Sensors record the surface temperatures inside and outside the specimen, as well as between insulation and GRP. With the data gained in this experiment, another ANSYS model is done. For correct simulation of the heat transfer between insulation and liquid nitrogen (or LNG later), a fluid simulation is necessary, which simulates the phase change from liquid to gaseous nitrogen. After validation of the model, a parameter study in the material properties of the insulation is performed, until a satisfying setup is achieved. T2 - IMECE 2018 CY - Pittsburgh, PA, USA DA - 9.11.2018 KW - GRP KW - LNG KW - Lightweight design KW - Thermal properties PY - 2018 AN - OPUS4-46788 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -