TY - CONF A1 - Eisenacher, Germar A1 - Kuschke, Christian A1 - Schubert, Sven A1 - Neumann, Martin A1 - Sterthaus, Jens A1 - Nitz, Thilo A1 - Wille, Frank T1 - Moisture content of wood - influence on mechanical behavior of wood filled impact limiter and importance for quality surveillance during manufacturing N2 - The moisture content of wood is known to have a significant influence on the wood’s mechanical properties. Using wood as an energy absorber in impact limiter of packages for the transport of radioactive material, it is of particu-lar importance to ensure the moisture content and thus relevant mechanical properties to be in specified limits. The paper surveys the influence of wood moisture content on the mechanical properties of wood. Different measuring methods are discussed with respect to in-situ applicability, accuracy and effort. The results of an experimental ana-lysis of the accuracy of hand-held moisture meters using the electrical resistance method are discussed. Conclu-sions are drawn regarding the measurement of moisture content of wood upon delivery as well as of complete im-pact limiter assemblies. Requirements for quality surveillance during manufacturing of wood filled impact limiter are derived and it is exemplified how to meet them. Construction, manufacturing and inspection of impact limiter encapsulation with regard to leak-tightness are addressed. T2 - RAMTRANSPORT 2012 - 9th International Conference on the Radioactive Materials Transport and Storage CY - London, UK DA - 2012-05-22 KW - Mechanical behavior of wood KW - Moisture content KW - Impact limiter PY - 2012 IS - 4.4 RAM 30 SP - 1 EP - 11 AN - OPUS4-26241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eisenacher, Germar A1 - Kuschke, Christian A1 - Schubert, Sven A1 - Neumann, Martin A1 - Sterthaus, Jens A1 - Nitz, Thilo A1 - Wille, Frank T1 - Moisture content of wood: influence on mechanical behaviour of wood filled impact limiters and importance for quality surveillance during manufacturing N2 - The moisture content of wood is known to have a significant influence on the wood's mechanical properties. Using wood as an energy absorber in impact limiters of packages for the transport of radioactive material, it is of particular importance to ensure the moisture content and thus relevant mechanical properties to be in specified limits. The paper surveys the influence of wood moisture content on the mechanical properties of wood. Different measuring methods are discussed with respect to in situ applicability, accuracy and effort. The results of an experimental analysis of the accuracy of hand held moisture metres using the electrical resistance method are discussed. Conclusions are drawn regarding the measurement of moisture content of wood upon delivery as well as of complete impact limiter assemblies. Requirements for quality surveillance during manufacturing of wood filled impact limiters are derived and it is exemplified how to meet them. Construction, manufacturing and inspection of impact limiter encapsulation with regard to leak tightness are addressed. KW - Electrical resistance method KW - Impact limiter KW - Moisture content KW - Moisture metre KW - Wood PY - 2012 U6 - https://doi.org/10.1179/1746510913Y.0000000023 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 23 IS - 3-4 SP - 179 EP - 185 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-29243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Apel, Andreas A1 - Ballheimer, Viktor A1 - Kuschke, Christian A1 - Schubert, Sven A1 - Wille, Frank T1 - Approach for the use of acceleration values for packages of radioactive material under routine conditions of transport N2 - The most relevant source of reference for load cases of packages for the transport of radioactive material under routine conditions is Appendix IV of the International Atomic Energy Agency (IAEA) Advisory Material TS-G-1·1. The acceleration values given there leave many questions open and have to be agreed upon with the involved competent authorities. Consequently, the actual load cases applied for a safety analysis may differ widely and could cause problems for international transport. To avoid such difficulties, it seems obvious that the according passages in TS-G-1·1 should be modified with the objective of making the load case data more consistent for a harmonized application in the IAEA member states. Papers pointing out in this direction were discussed at the PATRAM 2010 conference. The way to improve the acceleration data may lie in investigations and measurements considering, for example different types of vehicles and package masses. However, what should be the goal of such kind of surveys? Can such investigation provide values for every worldwide load case possible under routine conditions of transport? In particular, the different designs of vehicles give a reason to doubt that such an aim is realistic. The approach in this paper is to show that a less ambitious aim is more effective. Therefore, an approximate scheme is preferred, which renders better assistance in determining the appropriate acceleration values. T2 - RAMTRANSPORT 2012 - 9th International Conference on the Radioactive Materials Transport and Storage CY - London, UK DA - 22.05.2012 KW - Radioactive materials KW - Safety assessment KW - IAEA regulations KW - Lost cases KW - Routine conditions of transport PY - 2012 SP - 1 EP - 8 AN - OPUS4-26747 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sterthaus, Jens A1 - Ballheimer, Viktor A1 - Kuschke, Christian A1 - Wille, Frank T1 - Numerical analysis of bolted trunnion systems of packages for radioactive materials T2 - ASME 2012 Pressure vessels & piping division conference CY - Toronto, Ontario, Canada DA - 2012-07-15 KW - Bolted trunnion KW - German guideline BAM-GGR 012 KW - Local stress and strain fields KW - Local and nominal assessment criteria PY - 2012 SP - PVP2012-78499, 1-6 PB - American Society of Mechanical Engineers CY - New York AN - OPUS4-26835 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -