TY - CONF A1 - Kuschke, Christian A1 - Neumeyer, Tino A1 - Wille, Frank A1 - Droste, Bernhard T1 - Mechanical/thermal package design safety assessment and manufacturing quality assurance of spent fuel transport cask NCS 45 T2 - WM2010 - 36th Annual radioactive waste management symposium CY - Phoenix, Arizona, USA DA - 2010-03-07 KW - Package design KW - Spent fuel transport cask KW - Safety assessment PY - 2010 SN - 978-0-9828171-0-0 SP - 1 EP - 13 CY - Tempe, AZ, USA AN - OPUS4-24344 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuschke, Christian A1 - Ballheimer, Viktor A1 - Wille, Frank A1 - Komann, Steffen T1 - Mechanical assessment criteria of spent fuel assemblies basket design N2 - Packages for the transport of radioactive material are generally equipped with specific structures (basket) to support the radioactive content in defined position. The safety function of the basket depends on the kind of transported inventory. In case of transport cask for spent fuel, the basket design has to ensure the subcriticality of the fissile material in all conditions of transport in particular. Therefore the evaluation of structural integrity and neutron absorption capability of the basket is an important part of complete safety analysis. Sufficient heat transfer to maintain fuel assembly and cask temperature within allowable limits has to be verified as well. Corrosion resistance is an additional requirement on basket materials owing to contact with water during loading and unloading operations. Computational and experimental methods or their combination along with additional material and component tests can be used to analyse the mechanical and thermal basket behaviour under transport conditions defined in IAEA regulations. By deciding between the analysis methods, the design features (including material selection concept) as well as specific safety function should be accounted. In approval procedures of transport packages for radioactive materials, the competent authority mechanical and thermal safety assessment is carried out in Germany by BAM. Some questions of safety evaluation of basket designs are discussed in this paper based on the BAM experience within approval procedures. The paper focuses primarily on the mechanical behaviour of baskets with regard to the assumptions that have to be used in the criticality safety demonstration. The state of the art methodologies for computational basket stress and deformation analysis as well as for interpretation of drop tests results are presented. T2 - PATRAM 2010 - 16th International symposium on the packaging and transport of radioactive materials CY - London, UK DA - 2010-10-03 KW - Transport conditions KW - Spent fuel assemblies KW - Basket design PY - 2010 SP - 1 EP - 7 (Thursday T36/92) AN - OPUS4-24345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuschke, Christian A1 - Ballheimer, Viktor A1 - Wille, Frank A1 - Komann, Steffen T1 - Mechanical Assessment criteria of spent fuel assemblies basket design T2 - PATRAM 2010, The International Symposium On The Packaging And Transportation Of Radioactive Materials CY - London, England DA - 2010-10-03 PY - 2010 AN - OPUS4-24285 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuschke, Christian A1 - Neumeyer, Tino A1 - Wille, Frank A1 - Droste, Bernhard T1 - Mechanical/Thermal Package Design Safety Assessment and Manufacturing Quality Assurance of Spent Fuel Transport Cas NCS 45 T2 - Waste Management 2010 Conference CY - Phoenix, AZ, USA DA - 2010-03-07 PY - 2010 AN - OPUS4-24286 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisenacher, Germar A1 - Kuschke, Christian A1 - Schubert, Sven A1 - Neumann, Martin A1 - Sterthaus, Jens A1 - Nitz, Thilo A1 - Wille, Frank T1 - Moisture content of wood - influence on mechanical behavior of wood filled impact limiter and importance for quality surveillance during manufacturing N2 - The moisture content of wood is known to have a significant influence on the wood’s mechanical properties. Using wood as an energy absorber in impact limiter of packages for the transport of radioactive material, it is of particu-lar importance to ensure the moisture content and thus relevant mechanical properties to be in specified limits. The paper surveys the influence of wood moisture content on the mechanical properties of wood. Different measuring methods are discussed with respect to in-situ applicability, accuracy and effort. The results of an experimental ana-lysis of the accuracy of hand-held moisture meters using the electrical resistance method are discussed. Conclu-sions are drawn regarding the measurement of moisture content of wood upon delivery as well as of complete im-pact limiter assemblies. Requirements for quality surveillance during manufacturing of wood filled impact limiter are derived and it is exemplified how to meet them. Construction, manufacturing and inspection of impact limiter encapsulation with regard to leak-tightness are addressed. T2 - RAMTRANSPORT 2012 - 9th International Conference on the Radioactive Materials Transport and Storage CY - London, UK DA - 2012-05-22 KW - Mechanical behavior of wood KW - Moisture content KW - Impact limiter PY - 2012 IS - 4.4 RAM 30 SP - 1 EP - 11 AN - OPUS4-26241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eisenacher, Germar A1 - Kuschke, Christian A1 - Schubert, Sven A1 - Neumann, Martin A1 - Sterthaus, Jens A1 - Nitz, Thilo A1 - Wille, Frank T1 - Moisture content of wood: influence on mechanical behaviour of wood filled impact limiters and importance for quality surveillance during manufacturing N2 - The moisture content of wood is known to have a significant influence on the wood's mechanical properties. Using wood as an energy absorber in impact limiters of packages for the transport of radioactive material, it is of particular importance to ensure the moisture content and thus relevant mechanical properties to be in specified limits. The paper surveys the influence of wood moisture content on the mechanical properties of wood. Different measuring methods are discussed with respect to in situ applicability, accuracy and effort. The results of an experimental analysis of the accuracy of hand held moisture metres using the electrical resistance method are discussed. Conclusions are drawn regarding the measurement of moisture content of wood upon delivery as well as of complete impact limiter assemblies. Requirements for quality surveillance during manufacturing of wood filled impact limiters are derived and it is exemplified how to meet them. Construction, manufacturing and inspection of impact limiter encapsulation with regard to leak tightness are addressed. KW - Electrical resistance method KW - Impact limiter KW - Moisture content KW - Moisture metre KW - Wood PY - 2012 U6 - https://doi.org/10.1179/1746510913Y.0000000023 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 23 IS - 3-4 SP - 179 EP - 185 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-29243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ballheimer, Viktor A1 - Koch, Frank A1 - Kuschke, Christian A1 - Droste, Bernhard T1 - Similarity aspects for closure systems in small scale package drop testing T2 - PATRAM 2007, 15th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Miami, Florida, USA DA - 2007-10-21 KW - Scale model KW - Closure system KW - Drop tests PY - 2007 SP - 1 EP - 8 PB - Institute of Nuclear Materials Management AN - OPUS4-19654 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ballheimer, Viktor A1 - Koch, Frank A1 - Kuschke, Christian A1 - Droste, Bernhard T1 - Similarity aspects for closure systems in reduced scale package drop testing KW - Transport cask KW - Drop test KW - Scale model KW - Closure system KW - Bolted joints PY - 2010 U6 - https://doi.org/10.1179/174650909X12603543809800 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 21 IS - 1 SP - 31 EP - 36 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-21178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Apel, Andreas A1 - Ballheimer, Viktor A1 - Kuschke, Christian A1 - Schubert, Sven A1 - Wille, Frank T1 - Approach for the use of acceleration values for packages of radioactive material under routine conditions of transport N2 - The most relevant source of reference for load cases of packages for the transport of radioactive material under routine conditions is Appendix IV of the International Atomic Energy Agency (IAEA) Advisory Material TS-G-1·1. The acceleration values given there leave many questions open and have to be agreed upon with the involved competent authorities. Consequently, the actual load cases applied for a safety analysis may differ widely and could cause problems for international transport. To avoid such difficulties, it seems obvious that the according passages in TS-G-1·1 should be modified with the objective of making the load case data more consistent for a harmonized application in the IAEA member states. Papers pointing out in this direction were discussed at the PATRAM 2010 conference. The way to improve the acceleration data may lie in investigations and measurements considering, for example different types of vehicles and package masses. However, what should be the goal of such kind of surveys? Can such investigation provide values for every worldwide load case possible under routine conditions of transport? In particular, the different designs of vehicles give a reason to doubt that such an aim is realistic. The approach in this paper is to show that a less ambitious aim is more effective. Therefore, an approximate scheme is preferred, which renders better assistance in determining the appropriate acceleration values. T2 - RAMTRANSPORT 2012 - 9th International Conference on the Radioactive Materials Transport and Storage CY - London, UK DA - 22.05.2012 KW - Radioactive materials KW - Safety assessment KW - IAEA regulations KW - Lost cases KW - Routine conditions of transport PY - 2012 SP - 1 EP - 8 AN - OPUS4-26747 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sterthaus, Jens A1 - Ballheimer, Viktor A1 - Kuschke, Christian A1 - Wille, Frank T1 - Numerical analysis of bolted trunnion systems of packages for radioactive materials T2 - ASME 2012 Pressure vessels & piping division conference CY - Toronto, Ontario, Canada DA - 2012-07-15 KW - Bolted trunnion KW - German guideline BAM-GGR 012 KW - Local stress and strain fields KW - Local and nominal assessment criteria PY - 2012 SP - PVP2012-78499, 1-6 PB - American Society of Mechanical Engineers CY - New York AN - OPUS4-26835 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Apel, Andreas A1 - Ballheimer, Viktor A1 - Kuschke, Christian A1 - Schubert, Sven A1 - Wille, Frank T1 - Approach for use of acceleration values for packages of radioactive material under routine conditions of transport KW - Radioactive materials KW - Safety assessment KW - IAEA regulations KW - Load cases KW - Routine conditions of transport KW - IAEA advisory material TS-G-1.1 KW - Appendix IV KW - Revision of load case data KW - Acceleration values PY - 2013 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 24 IS - 2 SP - 55 EP - 59 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-30378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hilbert, F. A1 - Kuschke, Christian A1 - Goedecke, Thomas A1 - Neumeyer, Tino T1 - Drop testing of the NCS 45 T2 - PATRAM 2007, 15th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Miami, Florida, USA DA - 2007-10-21 KW - Drop tests KW - Scale model PY - 2007 SP - 1 EP - 8 PB - Institute of Nuclear Materials Management AN - OPUS4-18644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuschke, Christian A1 - Wille, Frank A1 - Ballheimer, Viktor A1 - Sterthaus, Jens T1 - international and German standards and guidelines for the design of trunnions of transport packages for radioactive materials N2 - Trunnion systems of packages for the transport of radioactive materials have to guarantee the safe handling of package during crane operations (lifting, tilting) and to secure package tie down to the transport vehicle, if the trunnions are used as attachment points during transport. The design of trunnions is based on IAEA Regulations SSR-6, the supporting Advisory Material SSG-26 and further appropriate technical standards and/or guidelines. For package approval procedures in Germany the guideline BAM GGR 012 has to be applied. If a package is handled inside a german nuclear power plant, the standard KTA 3905 has to be fulfilled additionally. In this paper the requirements of KTA 3905 concerning the trunnion systems as load attaching points (LAP) are discussed in connection with the recommendations in the guideline BAM-GGR 012 . This guideline is prepared at BAM Federal Institute for Materials Research and Testing for analysis and assessment of bolted lid and trunnion systems of Type B(U) transport packages. The quality assurance questions concerning trunnion systems are discussed as well. T2 - 11th International Conference on the Transport, Storage and Disposal of Radioactive Materials CY - London, UK DA - 15.05.2018 KW - Trunnion KW - Transport packages for radioactive materials PY - 2017 AN - OPUS4-45009 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Schilling, O. A1 - Kuschke, Christian A1 - Darnstädt, A. A1 - Schubert, Sven A1 - Günther, U. A1 - Wille, Frank T1 - Requirements for management systems for manufacturing of transport packages: the new revision of BAM-GGR 011 guideline N2 - In accordance with IAEA SSR-6 para 306 a management system shall be established and implemented to ensure compliance with the relevant provisions of the IAEA regulations. BAM has issued an update of the guideline: the BAM-GGR 011. The new revision describes necessary quality assurance measures for design, manufacture, testing, documentation, use, maintenance and inspection of packagings for package designs requiring competent authority approval for the transport of radioactive material. The measures can be categorised as system-related and design-related. They are independently approved and monitored by the German competent authority BAM and its authorised expert (BAM/T). The qualification of the organisation applying for the design approval certificate is reviewed in the context of the design approval procedure. The quality assurance measures for manufacture consist of three main steps. Pre-assessment of manufacturing documents such as quality plans, specifications etc., Manufacturing inspections according the pre-assessed documents and inspection before commissioning including documentation review. Periodic inspections during operation as well as relevant specifications for use and maintenance ensure that the properties specified in the approval certificate are preserved over the package life time. Special provisions for the return on experience regarding operational feedback for design, manufacture, use, maintenance and inspection are given. Special focus shall be given here to the rearranged and meanwhile established system of manufacturing inspections. This includes more transparent roles for a) the Producers authorised inspection 11282 representative, b) the independent inspection expert (S), acting on behalf of the manufacturer with acceptance of BAM, and c) BAM or its authorised expert (BAM/T). Additional attention shall be drawn to the management of deviations during manufacturing and provisions for maintenance and periodic inspections. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Quality assurance KW - Transport KW - Manufacturing KW - Surveillance KW - Radioactive material PY - 2019 SP - Paper 1128, 1 AN - OPUS4-49059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Ballheimer, Viktor A1 - Apel, Andreas A1 - Kuschke, Christian A1 - Moutarde, M. A1 - Desnoyers, B. A1 - Kalinina, E. A1 - Ammerman, D. T1 - ISO-Standard and IAEA guidance material for package load attachment Points - Current approaches and developments N2 - For transport package design and operation according to the IAEA regulations, the package shall be securely stowed and its retention system shall be capable to withstand load conditions of routine transport. The supporting IAEA Advisory Material SSG-26 provides information how to do that. Up to now package designers in different countries use other load factors for the design of attachment points than those specified in the IAEA guidance material. In particular the acceleration values vary between different countries and lead to difficulties during the validation of foreign approval certificates. Therefore the IAEA started a discussion process to review the existing guidance text. An international working group was constituted in 2013. Representatives came from different stakeholders, e.g. transport operators, competent authorities and modal organizations. The discussions concluded especially on the transport conditions which has to be considered for stowage design, including on the one hand the relevance of the load factors used for strength and fatigue analysis and on the other hand the criteria which have to be considered for the attachment points. The proposed acceleration values will be compared to those measured during recent multi-modal testing by Sandia National Laboratories that measured the acceleration levels experienced by a spent fuel flask during heavy-haul truck, sea, and rail transport. The ISO standard 10276 is dealing with the load attachment systems of packages as well. This standard considers the trunnion design, manufacturing and operational aspects. The regular standard revision phase started in 2017. An expert group discussed new state-of-the-art technology, different analysis approaches for strength and fatigue analysis and proposed revised text for the ISO standard for international discussion. The finite-element analysis approach incl. appropriate acceptance criteria are described and referenced. The paper describes relevant tie-down aspects, gives background argumentation relevant to analysis approaches, and tries to support harmonized application of the revised IAEA guidance material and the future revised ISO standard. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Load attachment KW - Stowage KW - Trunnion KW - Bolt design KW - Retention KW - Acceleration KW - Transport KW - Load cycles PY - 2019 SP - Paper 1130, 1 EP - 10 AN - OPUS4-49095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuschke, Christian A1 - Wille, Frank A1 - Ballheimer, Viktor A1 - Sterthaus, Jens A1 - Apel, Andreas T1 - Standards and Guidelines for Design of Trunnions of RAM Transport Packages N2 - Trunnion systems of packages for the transport of radioactive materials have to guarantee the safe handling of package during crane operations (lifting, tilting) and to secure package tie down to the transport vehicle, if the trunnions are used as attachment points during transport. The design of trunnions is based on IAEA Regulations SSR-6, the supporting Advisory Material SSG-26 and further appropriate technical standards and/or guidelines. For package approval procedures in Germany the guideline BAM GGR 012 has to be applied. If a package is handled inside a german nuclear power plant, the standard KTA 3905 has to be fulfilled additionally. In this paper the requirements of KTA 3905 concerning the trunnion systems as load attaching points (LAP) are discussed in connection with the recommendations in the guideline BAM-GGR 012. This guideline is prepared at BAM Federal Institute for Materials Research and Testing for analysis and assessment of bolted lid and trunnion systems of Type B(U) transport packages. The quality assurance questions concerning trunnion systems are discussed as well. T2 - Waste Management 2017 Conference CY - Phoenix, Arizona, USA DA - 05.03.2017 KW - Trunnions KW - RAM Transport Package PY - 2017 AN - OPUS4-39997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuschke, Christian A1 - Wille, Frank A1 - Ballheimer, Viktor A1 - Sterhaus, Jens A1 - Apel, Andreas T1 - Standards and guidelines for design of trunnions of RAM transport packages N2 - Trunnion systems of packages for the transport of radioactive materials have to guarantee the safe handling of package during crane operations (lifting, tilting) and to secure package tie down to the transport vehicle, if the trunnions are used as attachment points during transport. The design of trunnions is based on IAEA Regulations SSR-6, the supporting Advisory Material SSG-26 and further appropriate technical standards and/or guidelines. For package approval procedures in Germany the guideline BAM-GGR 012 has to be applied. If a package is handled inside a german nuclear power plant, the standard KTA 3905 has to be fulfilled additionally. In this paper the requirements of KTA 3905 concerning the trunnion systems as load attaching points (LAP) are discussed in connection with the recommendations in the guideline BAM-GGR 012. This guideline is prepared at BAM Federal Institute for Materials Research and Testing for analysis and assessment of bolted lid and trunnion systems of Type B(U) transport packages. The Quality assurance questions concerning trunnion systems are discussed as well. T2 - WM 2017 conference CY - Phoenix, USA DA - 05.03.2017 KW - RAM transport package KW - Trunnions PY - 2017 SP - Paper 17365, 1 EP - 12 AN - OPUS4-40815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -